Commentationes Mathematicae Universitatis Caroline

Jan K. Pachl
On projective limits of probability spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 13 (1972), No. 4, 685--691

Persistent URL: http://dml.cz/dmlcz/105452

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1972

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Eathematicae Universitatis Carolinae

$$
13,4(1972)
$$

Jan PACFI, Preha

The aim of this paper is to corroct some recults in the interasting poper of 200 [3].

I vish to thrnk Zdenck Frolík for basic suggestions.

1. Puae Frobabilities
1.1. Difinition (soe [3], t.1). Lat $P: \mathcal{A} \rightarrow[0,1]$ be r.finitely additive set fuaction on an Igebre $\mathcal{A} \in \exp X$. A ring $\Omega \subset \mathcal{A}$ is celled P-pure if
(i) $\boldsymbol{\Lambda}_{\boldsymbol{m}} \in \boldsymbol{R}$ for $\boldsymbol{m} \in \mathbb{N}$ (N is the set of all non-negative integers), $\boldsymbol{A}_{n} \geq \boldsymbol{i m p l y} P\left[\Lambda_{n_{0}}\right]=0$ for some n_{0},
(ii) $P[A]=\inf \left\{\sum_{n \in N} P\left[A_{n}\right] \mid A_{n} \in \Omega\right.$ and $\left.\cup_{n \in N} A_{n} \geq A\right\}$ for each $\mathcal{A} \in \mathcal{A}$.

If there exists a P-pure ring then P is soid to be pure.
Remark. Any pure \boldsymbol{P} is $\boldsymbol{\sigma}$-additive ($[3], 4.2$) but the converse is not true as it will be shown below (beforehand, David Preiss constructed another counter-example).
1.2. Lema (cf.[2], 7(ii)). Let $P: \mathcal{A} \rightarrow[0,1]$ be a nonatomic probability, let $\mathbb{R} \in \mathcal{A}$ be a \boldsymbol{P}-pure ring, $\mathbb{E} \mathbb{R}$, AMS, Primary: $\underset{60645}{20-00,28110, \quad ~ R a f . ~ Z ̌ . ~ 9.652, ~ 7.518 .117 ~}$
$P[\mathbf{E}]>0$. Thon thene exist $\mathbf{E}_{\mathbf{1}}, \mathbf{E}_{\mathbf{2}} \in \boldsymbol{\Omega}$ such that
$E_{1} \cup E_{2} \subset E, E_{1} \cap E_{2}=\theta$ nd $\frac{1}{4} P[E]>P\left[E_{i}\right]>0$ for $i=1,2$.

Yroof. As P is non-atomic thare are $\mathcal{A}_{1}, \boldsymbol{A}_{2} \in \mathcal{A}$
such that $A_{1} \cup A_{2}=E, A_{1} \cap A_{2}=\varnothing, P\left[A_{1}\right]=P\left[A_{2}\right]=\frac{1}{8} P[E]$. Thene exist $B_{i}^{j} \in \Omega(i=1,2 ; j \in N)$ such that $\bigcup_{j \in N} B_{i}^{j} \supset A_{i}$ and $P\left[\bigcup_{j \in N} B_{i}^{j}\right]<\frac{1}{4} P[E] \quad$ for $i=1,2$. Obviously $P\left[\mathcal{B}_{2}^{n} \cap E\right]>0$ ior some keN. As $\bigcup_{j \in N}\left(B_{1}^{j} \cap E\right) \backslash B_{2}^{k} つ$ $\supset A_{1} \backslash \bigcup_{j} \cup_{N} B_{2}^{j}=A_{1} \backslash\left[U_{j} B_{2}^{j} \backslash A_{2}\right]$ and $P\left[A_{1}\right]=\frac{1}{8} P[E]$, $P\left[\cup B_{2}^{j} \backslash A_{2}\right]<\frac{1}{B} P[E] \quad$ one has $P\left[U\left(B_{1}^{j} \cap E\right) \backslash B_{2}^{k}\right]>0$. Hence $P\left[\left(B_{1}^{\ell} \cap E\right) \backslash B_{2}^{n}\right]>0$ for some $\boldsymbol{\ell} \in \mathbb{N}$. The sets $E_{1}=\left(B_{1}^{\ell} \cap E\right) \backslash B_{2}^{\ell} \quad$ and $E_{2}=B_{2}^{m} \cap E$ have the required propetios.
1.3. Proposition (cf.[2], 7(iii)). Let $P: \mathcal{A} \rightarrow[0,1]$ be a non-atomic proba<ility (on a -algebra \mathcal{A}) and let $\Omega \subset \mathcal{A}$ be a P-pure ring, $E \in \Omega, P[E]>0$. Then theio exists $A \in \Omega$ such that $A \in E$, cand $A \geq$ exp so and $P[A]=0$.

Proof will be only sketched here (it is essentially the sene as the proof of 7(iii) in [2]): by means of Lemma 1.2 one can (inductively) construct the sets $E\left(a_{0}, a_{1}, \ldots, a_{n}\right), n \in N, a_{i}=0,1$ for $i=0,1, \ldots, n$, such that $P\left[E\left(a_{0}, a_{1}, \ldots, a_{m}\right)\right]>0$, $E\left(a_{0}, a_{1}, \ldots, a_{n}, 0\right) \cap E\left(a_{0}, a_{1}, \ldots, a_{n}, 1\right)=0$, $E \supset E\left(a_{0}, a_{1}, \ldots, a_{n}\right)=E\left(a_{0}, a_{1}, \ldots, a_{n+1}\right)$,
and put $\mathcal{A}=\bigcap_{n} \hat{Q}_{N} \Sigma_{n}$ where $E_{n}=U\left\{\left(a_{0}, a_{1}, \ldots, a_{n}\right) \mid a_{i}=0,1\right.$ for $0 \leqslant i \leqslant n\}$.

Remarks. Sicrpiński proved (supposing continuum-lyypothesis) that there exisss a non-atomic probebility space all null-sets of which are at most countrible (seo c.c.[4]); such a probability is not pure due to 1.3 (cf.[2], 7(iv)). The properties of pure probabilities are very fimiler to those of compact ones (for definition of compact measure see [21), e.g. indirect product of pure probabilitios is pure. It is even pretty possible that these two notions (compact, pure) are not really distinct; this is the cese for countably-generated (in the sense of Carathéodory) probabilities; the proofs will soon be published. .
2. Projective Limits
M. M. Rao gave conditions for σ-additivity of projective limits in terms of extensions of given probabilities ([3], 4.5-4.7). However, some of them are not correctly formulated (see 2.3).
2.0. Notations. Below, D is a st directed by the relation \leqslant (i.e. $R \circ R=R, R \cap R^{-1}=\operatorname{diagonal}, \boldsymbol{R} \circ \mathbb{R}^{-1}=\mathbf{D} \times \mathbf{D}$ where $R \subset D \times D$ realizes $\leq,\left\{\left\{_{\alpha}\right\}_{\alpha \in D}\right.$ is a femily of σ-algebras $\subset \exp X$ such that $\mathcal{F}_{\alpha} \subset \mathcal{F}_{\beta}$ for $\alpha \leqslant \beta$; $\mathcal{F}=\bigcup_{\alpha \in D} \mathcal{F}_{\alpha}, \sigma \mathcal{F}$ is the σ-algebra generetod by \boldsymbol{F}. Given probabilities $P_{\propto}: \mathcal{F}_{\alpha} \rightarrow[0,1]$ for $\boldsymbol{\alpha} \in \mathbb{D}$ such that $P_{\alpha}[E]=P_{\beta}[E]$ for $E \in \mathcal{F}_{\alpha} \cap F_{\beta}, P: \mathcal{F} \rightarrow[0,1]$ is the
finitely additive set function such that $P[E]=P_{\alpha}[E]$ for $E \in \mathcal{F}_{\boldsymbol{\alpha}}$.
2.1. Proposition (see 2.0). The following conditions ore equivalent:
(i) P is σ-additi:e;
(ii) for any $\propto \in \mathbb{D}$ there exists a probability $\bar{P}_{\alpha}: \sigma \mathscr{F} \rightarrow$ $\rightarrow[0,1]$ that exiends P_{α} and fo: every such extensions the following statement holds:
for every $\boldsymbol{A}_{n} \in \mathcal{F}(m \in N), \boldsymbol{A}_{n} \searrow \boldsymbol{\eta}$ and $\varepsilon>0$ there are $\boldsymbol{\alpha}_{0} \in$ © $D, n_{0} \in N$ such that $\bar{P}_{\alpha}\left[A_{m}\right]<\varepsilon$ for $\alpha \geq \alpha_{0}, m \geq m_{0}$ $\left(=\operatorname{maping}\langle\alpha, n\rangle \longmapsto \Gamma_{\alpha}\left[A_{m}\right]\right.$ is continuous on $\left.D \times N\right)$; (iii) Ior any $\alpha \in D$ theie exists a probability $\overline{P_{\alpha}}: \sigma \boldsymbol{\sigma} \rightarrow$ $\rightarrow[0,1]$ that extends P_{α} and $\lim _{n \rightarrow \infty}\left(\operatorname{sum}_{\alpha \in D} P_{\alpha}\left[A_{n}\right]\right)=0$ for every $A_{n} \in \sigma \not \mathcal{F}^{\prime}(n \in \mathbb{N})$ with $A_{n} \searrow \theta$ (= mapping $m \longmapsto \bar{P}_{\propto}\left[A_{m}\right]$ is continuous on N uniformly for all $\propto \in D)$.

Eroof. Implications (ii) \Rightarrow (i) and (iii) \Longrightarrow (i) are immediate. $(i) \Longrightarrow$ (ii) and $(i) \Longrightarrow$ (iii) : to show the existence of the required extensions one can use for \bar{P}_{α} the (unique) extension of P on $\sigma \mathbb{F}$. If $\bar{P}_{\infty}^{\prime \prime}$ s are arbitrary extensions of P_{∞} 's and $\boldsymbol{A}_{n} \in \mathcal{F}, A_{n}>\boldsymbol{q}$ then $P\left[A_{n_{0}}\right]<\varepsilon$ for some m_{0} and $A_{n_{0}} \in \mathscr{F}_{\alpha_{0}}$ for some \propto_{0}. Hence $\bar{P}_{\alpha}\left[\Lambda_{m_{0}}\right]=P_{\alpha}\left[A_{n_{0}}\right]=P\left[\Lambda_{n_{0}}\right]<\varepsilon$ for $\alpha \geq \alpha_{0}$ and $P_{\alpha}\left[A_{m}\right] \leqslant P_{\alpha}\left[A_{n_{0}}\right]$ for $n \geq m_{0}$.

Remark. The condition in 2.1 (iii) can be reformulated like this:
$\left\{\bar{P}_{\sigma} \mid \propto \in D\right\} \in c a(X, \sigma \mathcal{F})$ is weakly sequentially compact (see [11, IV.9.1) or like this:
\bar{P}_{α} 's are uniformly λ-continuous for some
$\lambda \in c a(X, \sigma \mathcal{F})$ (see [1], IV. G.2). But these conditions need not hold for every family $\left\{\bar{F}_{\alpha}\right\}$ of extensions (see 2.3).
2.2. Proposition (see 2.0). Let $\boldsymbol{D}=\boldsymbol{N} \quad(\boldsymbol{N}$ naturalny ordered). The following conditions are equivalent:
(i) P is $\boldsymbol{\sigma}$-additive;
(iv) for any $k \in \mathbb{N}$ there exists a probability $\overline{P_{k}}$: $: \sigma \boldsymbol{q} \rightarrow[0,1]$ that extends P_{x} and for every such extensions and for every $A_{n} \in \mathscr{F}(m \in N), A_{n} \geq \varnothing$ it holds $\lim _{n \rightarrow \infty}\left(\operatorname{mun}_{m \in N} \overline{P_{m}}\left[A_{n}\right]\right)=0 \quad\left(=\right.$ mapping $m \mapsto \bar{P}_{m}\left[A_{n}\right]$ is continuous on N uniformly for all $k \in \mathcal{N}$); (v) for any k $\in \mathbb{N}$ there exists a probability $\overline{\mathcal{F}_{\mathcal{R}}}: \boldsymbol{\sigma} \rightarrow$ $\longrightarrow[0,1]$ that extends P_{R} and such that $\lim _{m_{n} \rightarrow \infty} \bar{\Gamma}_{m_{r}}[A]$ exists for any $A \in \boldsymbol{A} \quad\left(=\right.$ mapping $k \mapsto \Gamma_{m}[\mathcal{A}]$ is contenuous on N for any A).

Proof. Implication (iv) \Longrightarrow (i) is clear, implication $(v) \Longrightarrow$ (i) is the theorem of IIikodym (see [1], III.7.4). (i) \Longrightarrow (iv) and (i) $\Longrightarrow(v)$: the existence of extensions
\bar{P}_{n} is obvious as in the proof of 2.1.
Let P_{p} 's be arbitrary extensions of P_{k} 's, $A_{m} \in \mathscr{F}, A_{m} \searrow \emptyset, \varepsilon>0$. For some m_{1} it holds $P\left[A_{m_{1}}\right]<$ $<\varepsilon$, for some k_{1} it holds $\Lambda_{n_{1}} \in \mathcal{F}_{n_{1}}$, hence $\bar{P}_{m_{r}}\left[A_{n_{1}}\right]=$ $=P_{k_{1}}\left[A_{m_{1}}\right]=P\left[A_{m_{1}}\right]<\varepsilon$ for $k \geq k_{1}$. For $k=0,1, \ldots, k_{1}-1$
there are $\boldsymbol{\ell}_{\boldsymbol{i}}$ such that $\bar{P}_{i}\left[\boldsymbol{A}_{\boldsymbol{\ell}_{\boldsymbol{i}}}\right]<\boldsymbol{\varepsilon}$; put $\boldsymbol{m}_{0}=$ $=\max \left\{n_{1}, \ell_{0}, \ell_{1}, \ldots, \ell_{m_{1}-1}\right\}$; then $\bar{m}_{k_{r}}\left[\Lambda_{n_{0}}\right]<\varepsilon$ for any h $\in N$.
2.3. Examples. (e.) The condition in 4.5 of [3] does not necessarily hold for erbitrary extensions $\overline{P_{\alpha}}$: Lebesgue probability on [0,1] is the projective limit of all its restrictions to finite subalgebras and any such restriction can be xtended as convex combination of Dirac measures. The fomily $\left\{\overline{P_{\propto c}}\right\}$ containing all these extensions works very wildly and does not satisfy any expected condition.
(b) This examplc shows (for $D=\mathbb{N}$) that a family $\left\{\overline{\boldsymbol{P}_{\mathrm{a}}}\right\}$ of extensions need not be terminally uniformly $\boldsymbol{\lambda}$ continuous for any finite measure $\boldsymbol{\lambda}$ on \boldsymbol{F} : For $k \in \mathbb{N}, \mathcal{F}_{\boldsymbol{R}} \in \exp [0,1]$ is the algebra of all the finite unions of intervals with end-points $\frac{n}{2^{m}}$, $n=0,1, \ldots, 2^{k}, P_{k}$ is the restriction of the Lebesgue probability on $[0,1]$ to $\left.\boldsymbol{\beta}_{m}, \overline{P_{m}}=\frac{1}{2^{m}} \sum_{n=1}^{2_{n}^{m}} \delta_{x(n, k)}\right)$ where $x(n, k)=\frac{2 n-1}{2^{m+1}}$ and δ_{x} is the Dirac measure supported by \boldsymbol{x}.

References
[1] DUNFORD-SCHWARTZ: Linear Operators, Part I,New York 1958.
[2] E. $\overline{H A} A C Z E W S K I:$ On compact measures, Fund.Math.40(1953), 113-124.
[31 M.H. RAO: Erojective limits of probability spaces,

J. Wultivariate Analysis 1(1971),28-57.
 [4] W. SIERPINíSKI: Hypothèse du continu, Warszawa-Lwów' 1934.

Matematicko-fyzikální fakulta
Karlova universita
Sokolovská 83, Praha 8
Československo
(Oblatum 25.8. 1972)

