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Let At be an open set in Jt'm' , the Euclidean fin, -

space of dimension /m, > 2 , and suppose that its bounda­

ry B is compact and non-void. Recall that a point x £ R""' 

is termed a hit of an open segment S on At provided x e 

€ 5 and each neighborhood of X meets both S r\ & and 

S - M in a set of positive linear measure. Given y. e K<m', 

x, > 0 and 0 e T = ^ c R ^ j Ul =15 we shall denote 

by 1% (8,/y,) the total number of all the hits of 

l^+^fl-O^^*:*,? on Jl , For fixed tv >> 0 and 

ty € Jt*n' , nt^CS,^) is a Baire function of the variab­

le 0 on r and one may define 
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where H stands for the (<m.->1) -dimensional Hausdorff mea­

sure in It"** . As usual t for A c .R""' we shall denote by 

C& & and fjv ft the closure and the boundary of A f res­

pectively. 

For investigations of the generalized Dirichlet problem 

on M we adopt the following assumptions: 

(1) UML m &,(%"»- ctM) , 

It should be noted here that each x • B is a regular 

point for the Dirichlet problem on JA . 

The symbol Mf will denote the solution of the genera­

lized Dirichlet problem on )k , provided f is a resolutive 

function defined on B $ given x e I , <«,* stands for 

the harmonic measure relative to -M and x • Now we are in 

a position to announce: 

Proposition. Let H denote the restriction of M to 

3 • If JH is connected and x c M , then the measures H 

and p , x are mutually absolutely continuous. 

Corollary. A bounded function on 3 is resolutive if 

and only if it is K -measurable. 

Put ff « Jf* - at M . It follows from (l)f(2) and 

a result of J. Krai that 9 has only a finite number of com­

ponents and their closures are mutually disjoint. (Note that 

the same is true for II •) We shall denote by ^ ( 0 it ^ *c 

«c co ) the number of all bounded components of 6 • These 

components will be denoted by Gf, and we shall fix an ar-
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bitrary «.£ €(*..}. ( £ m 4,... 9 q,) . 

Let us recall that a unit vector 6 m V is called 

the exterior normal of M at ^ e X'w' in the sense of H. 

Pederer provided the symmetric difference of M and the 

half-spaoe 

4* € IT*-, (X-<¥-)• 9 <* 0 } 

has rm, -dimensional density 0 at ̂  , We put nrv (fy) m Q 

if 9 is the exterior normal of ii j otherwise m, (n^\ deno­

tes the zero vector. 

Finally, let JJ consist of all functions on B which 

are equivalent CJ£) to a linear combination of the charac­

teristic functions of £K (?£ • 

Some results of t23,Q3, previous investigations of the 

author (see Czechoslovak Math.J. 22(1972),312-324, 462-489, 

554-580) and a modification of the Riesz-Schauder theory gi­

ven in [31 permit one to obtain the following results: 

Theorem. Given an arbitrary bounded H -measurable func­

tion 9- on B there are the bounded H -measurable function 

f (determined modulo $ ) and uniquely determined constants 

cu£ such that for each /y. c Irl 

^^^-^ьî^^w^^ir^ 1-/WV 

Moreover, the nontangential limits of JUA. equal a- at each 

X « B except for a set of H -measure zero. 

The concepts employed here have their origin in J. Krai's 

investigations [2]. In § 3 of [2] tho representation of the 
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form (3) for-continuous boundary conditions is given under a 

slightly more restrictive assumption on the shape of k . 

Complete proofs of the above results together with fur­

ther details are contained in a paper submitted for publica­

tion in fiasopis pro pestovani matematiky. 
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