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Absgtract:

Necessary and sufficient condition for w* - u -conti-
nuity of the Dyer embedding of a B -spage X* with a gene-
ralized Marku3evié basis to C,(H) 4is found.
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Notations. In this paper, X denotes a real B =-space
with the norm Il .l , X* 4its dual B -space with the w¥*-

topology ar*, and X** 4its second dusl, 2e denotes the

’
natural embedding of X into X**

For each locally compact topological space H we de-
‘note by Co(H) the B -space of all real tontinuous func-
tions on H which vanish at infinity with the supremum norm
e and the weak topology ar « In the case H 1is
discrete we denote Co(H) = ¢, (H) .

For any normed linear space V and any set M c V

we denote by ARim M the linear span of M in YV and
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s M the norm-closure of Lim M ,

IftT isawset, '+ f , then £, ,(T) 1is the B -
space of all bounded mappings from I into R, R being

real numbers.
Definition 1 (see [2]), A B -gpace X has a generali-

zed MarkuSevid basis (shortly gb) (B,y), Bc X, g c X*
if: ‘

(1) it reB,fey , then s 0,f+0 and £(&)e
e £0,1%,

(i1i) for any finite set D c B there exists a finite
set D' c B so that: D c Uim D’ and if fe ¥ , then

£02 d) et}

(i11) »nB =X ,

(1v) < is total over X and 4 is bounded in X* .

Remark., (a) Each finite set D ¢ B such that for any
fev, £( %, d) 40,13 , 1iscalled 7 -orthogonal set.

(b) MarkuSevi& basis (shortly Mb) is a gMb for which

(B, ) 1s'a biorthogonal collection.
(¢) From the condition (ii) it is easily seen that

Lim B = { Z .2,7 d;;idy,...,dp ¥ 1s a 7 -orthogonal sub-

set of B , «(ao,...,.’/\m}cx,m € @ 3 . We will call each

-
such 5?‘0 A, d; (B, ) =-combination.
(d) Evidently any Mb is a gMb. It was proved in [4] that

any weakly compactly generated B -space X (i.e. there is
a weakly compact X c X such that X = sp KX ) has a Mb,

The following two examples show that there is a great diffe-
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rence between Mb’s and gMb's and the class of all B -spaces

with a gMb is very large.

Example 1, Let I' be a nonempty set. Then £ (T)
a giidb,

Proof. Let 7 = {g;, < eI ? where lg),‘_(.x)=x(oc)
for any x € £,(T), < eI’ . It is easily seen that for
B=1x € £y (T'); x(x)e$0,1} forany « €I ; x & 0}
(B, 9 ) wsatisfies Conditions (1),(iii),(iv) from Definition

has

1, We show that (B, 9 ) satisfies (ii): .

Let { &,,..., 8, §cB,mew . Forany set A c {0,...,m},
we define d, € £, (I') s0 that d, () =41 iff
A={ief0,...,m}, 8;(x)=13,ds(x) =0 in 8ll other cases,
for any « € I' . Then a finite set {d,; # + A c10,...,m}ic
¢ B is y -orthogonal and for any 4 € 10,...,n §

Ly, = S{dp; P 4Aci0,...,mi, ieA} .

Example 2. It is easy to see that if (B, o) is a Mb
end B’,B” ¢ B 8o that B'uB”"=3B, B'n B” = 4 , then
s B Asp B =103 .

The following example shows that in the case of gMb this is
far from true:

In the space ¢, (I') , T e nonempty set, let ¥ =
~={eg,x €'} ,where e, € £,(T') g0 that ey () = 1
1If x=0,e (B =20 if c 3 foramy«x,B el . Let
B=4ixec,(IM;x(x)e 0,1} for any x eI, x # b'} .Then
(B,y) is a gb of ¢, (I') , Suppese that B = B'v B” ,
BAB"=F and sp B’ A apB” = {03 . We show that then
B'’=f or B'"=g . )

We choose some o, e I' , Let e, ¢ B’ . Let e '\{x,}.
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If e, € B” then e, + ey, € B can be neither in B’
nor in B"” , because in both cases st B’ n sp B” % {03 .

Therefore e, € B’ hence B c &m B’ i.e. B" =0 .

’
Definition 2 (Dyer,[(2], p,53-55)s Let a B -space X

have a gb (B, ») . Let y'= y*\ {0}, where y* is

‘the w* -closure of ¥ in X , Then (B, ') 1is a g¥d

of X, o' -orthogonality is j -orthogonality and 3’ en-

dowed with the partialized w* ~topology from X* 4s a Boo-

lean apace' which we denote by H . We call the Dyer embed-

ding ef X into C,(H) the mapping T: X — C,(H)

defined Tx(f)=f(x) foremy fey’, xe X . Dyer

shows in [2) that T 1is continuous, linear, one-to-one end

onto a dense subset of C,(H) .

Remark 2, If (B, ) 1is a Mb, then Co(H) = ¢, (H)

and so X has an equivalent strictly convex norm (see [1]).
Because £,(I') for I' infinite has no equivalent stric-
tly convex norm ([1]), £,(T) 4is an example of a B =-spa-
ce which has a gMb and has no Mb, Our aim is to find the ne-
cessary and sufficient conditien for w* - -continuity of
the Dyer embedding of a B -space X* with a gMb into

Co (H) . We need the following lemmas and definitions.

Definition 3. Suppose X has a gMb (B, 3») . Then \;Je
denote by 2, (B) the following B -gpaces
L£oC(B) =4y €L, (B), (a) there exist C > 0 so that
for any finite 7y -orthogonal set D c B, 5 Iy (d)l& C,

mn m d€D
(v) i£ .3 A, & and 5?0 @id; ere two (B,y) -com-

a4

ms m mn
binstions and 3\ A, 0; =é§° (e , then S hs g () =
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= 27%‘; w; g (a3 as the vector subspace of £, (B) and
with the nomm Il - I, defined |l 4 I, =M{d.§) lng ()}
D is a finite <y -orthogonal subset of B3 for any

Yy € LO(B) .

Lemma 1. £,(B) isa B -space.
Proof: Easy.

Lemma 2. £ 4(B) 4ie isometricelly isomorphic with
LGy (HNI¥

A "
Proof. Let A=1{ X a, T(&;) ; 3 A, &, is a (B,q) -

combination } ,where T is the Dyer embedding of X inte
Co,(H) , A is a normed linear space (with the norm
e ) with the same dual as C,(H) . For any
m
e L,(B),xe A we define <x”5’)=-‘,§o A,y (B;) | where
. m
X =&§01¢T(%), &go A, R, is a (B, 9 ) -combination. The
"~
definition of <., 6 .)> 18 correct because if .3 A. &
+=0 v
- .
and 4§0 @3 d; eretws (B,y ) -combinations, then:
ST =% w T(d,) 5 s
2 3=, % ¢ 4 in}pliee ;?oﬁi‘b-t =5.z-'0 @j g and
" m
8o T A 4(2,) =§§"‘o ;4 (d;) as follows from the condition

(b). We show that (A, £,(B))> is a dual pair and that in
this duality L,(B) represents all elements of A¥ | whe-
re A* ig the dual of A . By means of (b) and properties
of T we show that <., .) is bilinear. Obviously
<oy o) is separated.
o m

Let m e £,(B),xehA,x= S AT, S by
is the (B, 7 ) -combination. Then:
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m m
£ lix .yl
because lllx Il = max 12, | as it is easily seen from the

faot that T (&)= ccp,y , where E(y)=d{fe g’ £ Ly)=15,
4+ =0,1,...,m , are pairwise disjoint and 1 ece,) deno-
tes the oharacteristic functiom of E (&;) . Hence any

4 € L,(B) represents the unique My € A* . Moreover, it
is easy to prove that llw, lly = Iy, where Il - Il ,

is the dual norm in A*

Let @w € A* . Porany & ¢ B we define o (&)= w (TA).

Then o evidently satisfies (b) and if {,,..., &, 3 c B

H

ia ¥ -orthogonal, thon\
m m m .
el e 3 @ (Te)l = 2 aye @ (Th) =
=u cﬁo o, T#) € ll@lly, vhere a; = sign @w(Té;) ,

for any 4 = 0,4,..,m , Hence 4 & £,(B) . Obvicualy
(v = 4y - Thus A" ia isometrically isomerphis with
2,(B) . ’ .

Thecren. Let a B -apace X* have a gib (B,g?) ,let
" T be the Dyer embedding ef X* into Co (H). Then T is
aw* - ay -continuous iff ea¢h F e X** satisfying the con-
ditions ‘
Q) pup % IF(@); DB 18 o -orthogonal 3 < + o

is an element of <2 (X) .
Progf. Por any ¢ & A*  we denote by @ the comti-
nuous extension of @ ‘on Co (H) .

T 1s w* - w -continuous iff fc¥ any @ e A* it holds
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@ T €2 (X), Pron Lemma 2 it follows that T is
ar* -ar -continuous iff for any 4 & £,(B) @, T € = (X).

a) Suppose that for any 4 @ £,(B), @y T e 2 (X). Let Fe
e X** gatisfy (1), Then F|B =restriction of F to B
is an element of £, (B) . For any &reB F(&)= @, (TE)
and g0, because spuB=X*, F= @ . Te 2 (X) .

b) Suppose that for any F e X** satisfying (1) it is
PeeeweX).

Let 4 € £,(B) ,We can extend 4 1linearly continous-
ly on the element F, ¢ X**  gatisfying (1). Hence

Corollary 1. Let X* have a Mb (B, ), T is the Dyer
embedding of X* inte co(H). Then T d4s w* - -conti-
nuous iff ¥ c % (X) .

Proof, a) Let T be w* - w -continuous and F e o .
Then bg‘s‘P(b’“ =4, 80 F satisfies (1) and hence F e
e % (X) .

b) Let y c % (X)., Let F € X** eatisfy (1), Since
any finite subset of B is ¢ -orthogonal, it holds that
W%B‘P(b)k*' o and g0 F= 5 F(4).F, ,where F e

so that F, (&)= 4, for any & € B . Hence FewlX).

Corollary 2., Let X* have a M (B, ) so that
Yy c2%(X). Then X 4is weakly compactly generated.

Proof. The Dyer embedding is them w* - w -continuous.

The closed unit ball in X* 4a 4« * -compact and hence affi-

nely homeomorphic with some wr -compact subset of c,(H) .
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Prom [3], Theorem 3.3 it follows that X 1is weakly compact-
ly generated.
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