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COMPATIBLE PARTTAL ORDERINGS IN BOOLEAN ALGEBRAS
D.J, HANSEN, Raleigh

Abgtract: A compatible partial ordering < in a Boo-
lean algebra . is a partial ordering defined on
the set B such that a +x 2 & +x anda,-.xé!r-x
for each o, &r and x in B with a £ &, It is proved
that if a compatible poset (B, <) containsg a pair of
comparable minimal and maximal elements then (B,<) is
isomorphic to the cardinal sum of a family of 1sonorphic
Boolean lattices, Also, it will be shown that the condition
of finiteness on a Boolean algebra ( B, + is neces-
sary and sufficient in order for each of i%s compatible po~
getsa (B, £ ) to have a structure of the sbove form. lLast,
it is proved that the number of compatible posets which can
be constructed in a finite Boolean algebra of cardinality
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1, Introduction. A compatible partial ordering £ in

a Boolean algebra (B,+, ») 1is a partial ordering defi-
" ned on the set B such that a +x <« & +x and a +x £
< 4 +x for each a,tr and x in B with a £ 4r.Well

known examples of such orderings are X, (£)=4(x,y)IxeB,yeB,
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and X -4 = x3 , the dual of R, (<) , and the trivial
ordering R,(£) = {(x,x)Ix e B} .

The objective of this paper is to study the structure
of those compatible posets (B, £) which possess at least
one palr of comparable minimel and maximal elements, It will
be shown that such a poset is isomorphic to the cardinal sum
of a family of isomorphic Boolean lattices., Also, it will be
proved that the condition of finiteness on a Boolean algebra
(B,+, ) is necessary and sufficient in order for each
of its compatible posets (B, <) to have a structure of
the above form, Last, it will be shown that the number of
compatible posets which can be constructed in a finite Boo-

lean algebra of cardinality 2™ is 3™ .

Throughout (B, +, -) will denote a Boolean algebra
with 0 and 4 denoting respectively the additive and mul-
tiplicative identity in B . Also, for each x im B , x*
will denote the complement of x in B .

Terminology and background material needed for this ar_
ticle may be found in {1].

2, Main results.

Lemma 1, If £ 1s a compatible partial ordering in
(B,+,-) and each of m, and m, is a maximal (mini-

mal) element in B , with 4 £ m, and 1 £ m, (m, <1

)
and m, £ 4) then m, = m, .

Lemma 2, Suppose £ is a compatible partial ordering
in (B, 4+,.) . If there exists in B & minimal element
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and a maximal element which are comparable then there ex-
ists a minimal element g and a maximal o« in B such
that 3 £ 1 £

.

Proof. Suppose each of m and M is, respectively,
a minimal and a maximal element in B with m < M . Let
x € B such that 4 £ M+ m* < x . Then
X=(M+m*)x =Mx + m*x ., Now, from the maximality
of M\ and 4 £ x , we have that M = Mx . Also,
x¥ <2 (0 end the minimality of m  implies that m +
+x¥=m @and thus m*x = m* . Hence x = Mx + m*x =
=M +m™ and consequently o =M + m* is maximal,

In a similar manner (3 = m + M*¥< 41  1is minimal.

Theorem 1. Suppose % is a compatible partial order-
ing in (B, +, ) which possesses a comparable pair of
minimal and maximal elements. Let each of (3 and (see
Lemmas 1 and 2) denote respectively the minimal and maxi-
mal element in B such that (3 £ 4 £ o« . For each m
in B, with <fB+m=4,1let T, =4{xlxeB
and Bm = X £ o<m 3 . Then

(1) (T,, <) 1is a Boolean lattice with x v 4 =

= (x+qy) e + xg and xA Yy = (X+4) 03 + xy for
each X and 44 in T, ,
(ii) (T,,, <) 1is isomorphic to (Tn, <) and no ele-

ment in T,, is comparable with an element in T,, for

m % m

(1i1) each element of B is a member of some T, -

Proof. Let X,y € T;. Then (x+4)x + x4 € Ty
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since (8 £ x, 4 € «  implies that f £ «f £ (x+g)x %
and (3 £ x4 < and thus the inequality B £ (x+ 4 )« +
+ Xy £ o . The element (xwy)ec + X is an upper bound
of x and 4 since x = x (x+4) < (x+4)x and g4 =

= np (x+4) £ (x+gf) o implies that x = x + xgy £ .(_.xwy.)aco-.xg‘
- and Y=gsXy £ (X+y) < + Xy . Now suppose x £ «

and 4 £ «w for some « e T, . Then x+4 < « and
x¢g £ w and thus (x+ gl +xy £ + & = « . Hence
xvy=(x+y)c +x4 is the least upper bound of x

and 4 . In a similar menner, x A = (x+4)f + x4 is
in T,, and is the greatest lower bound of x and 4

Therefore (T,, &) is a lattice.

Next, it is readily verified tizat xx + Bx*+ xB e T,
for each x € B , Now, let ¥ denote the mapping from
B into T; osuch that 2 (x) = «xx + Bx™* + <3 for
each x € B . Then, by direct computation, it is seen that
T 1ia a lattice - homomorphism from the Boolean lattice
(B,R,(£)) into (T,,%) . In addition, the mapping =
is onto T, eince, for each 4 « T,, *(xy +fy*+ )= g .
Henoe (T4, %) 1is a homomorphic image of (B, R, (£))
end thus (T,,&€) 1is a Boolean lattice.

For part (ii), consider the mapping g¢:T,—> T,, whe-
re @(x) = hn..x . The mapping ¢ 1is subjective since for
each 4 1in Tp,xB+y 6 T4 and @ (B +qg)m cfim +
+my =By rmy=(<l+em)y =y .Now suppose @ (x, )< @ (x,).
Then o+ @ (x,) ‘ xB+q@(x,;) implies that «f8 +x, <
€ P + x, . Since (eB¥+x,=4=(xp)*+ x, , we thus

obtain from (ocfd+x4) ((BI*+X4) & (acfS 4 x0)) (0 @+ xp) that
X, € X, o )
* - 234 -




Similarly, x4 =X, if @(x4) = @(xp) . Hence ¢ 1s an or-
der isomorphism since, in addition, x; £ x, obviously
implies that @ (x,) « @(x3) . Therefore (T,,<) is

isomorphic to (T,,, £) .

To complete part (1i), let 4 € T,z € Ty, and suppo-
se g4 £x ., Now fm £ 4 £am and Bm £ z £ccm inm-
plies that xfm =By 8nd «fim = xBzx ., Thus xfm £ <f3m
since 4 £ 2 . Hence
m £ oxfm+m=(xp+m)miml=mem=(xf+m)miml=afim+m &m .
Therefore m +m*< 41 and 4 £ m + m* . Now from m +
+m*< 1 and the minimality of B8  we obtain S (m +m™*) =3
and thus B3 £ m + m* since f3 £ 4 implies that
(5(”+,m*)"' m +m* . Consequently Bm £ mm . In a simi-
lar manner, 4 ¢ m + m™* and the maximality of o« 4implies
that m + m* £ o« and thus mm £ «m ., Therefore (3m <
£mEcmm £ocm and fm £mm £m £ cm .Thus «fAim =
= (f3)mm)=xf3m ,Hence, from («xf)m=(xB)m and xfB+m=1=
=xfl+m,m=m , Therefore, if m 4 m , no element of

(Tm, 4) 18 comparable to an element of (T, , <) .

Part (iii) follows from the fact that if ~ € B  then

2 €Ty for m=2z+ («fB)* .

Corollary. Suppose < is a compatible partial order-
ing in (B, +, ) , A necessary and sufficient condition that
(B, £) ©be a Boolean lattice is that there exists an ele-
ment « € B such that 1 £« and 0 £ o .

Proof. Let x € B, Now 4£ e and 0 £ o implies

that x £ ocx and X € «x +Xx . From X £ X We

- 235 -



obtain o +X £ o« and thus X € « . In a similar manner,
w*< 0 and oc* < 1 implies that «* % x . Hence «*<
£ X £ and thus, by Theorem 1, (B,<)=(T,,£). Since
the condition is obviously necessary, this completes the

proof,

Theorem 2. Suppose € 1s a compatible partial order-
ing in (B, + ,-) . A necessary and sufficient condition
for every such poset (B, £) to be isomorphic to a cardi-
nal sum of isomorphic Boolean lattices is that (B, +, -)
be finite.

Proof. I (B,+,-) 4is finite then =< obviously
possesses a palr of comparable minimal and maximal elements
and thus, by Theorem 1, (B, £ ) 1is isomorphic to a cardinal
sam of isomorphic Boolean lattices.

Now suppose every such (B, «) is isomorphic to car-
dinal sum of isomorphic Boolean lattices, We first want to
show that (B, +,.) 1is compiete and atomic and thus be ab-
le to conclude that (B, +,+) 1is isomorphic to the algeb-
ra of all subsets of some set. Let X denote a non-empty

n
subset of B and let Dﬂ_;%’%%“h-.e](, X, eB , and

m e x*3} . To simplify notation, let <, denote the natu-
ral partial ordering X,, (<) , For each fr,9 € B, de-
fine fo £ q 4if and only if there exist t € B, d; ,d; eD
such that fp =d;+t,q= d_é_...t and fr £4 q . Then £
is a compatible partial ordering of (B, +, - ) and no
element not in D is comi:arable with an element of D .

Thus (B , <) 1is the cardinal sum of isomorphic Boolean
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lattices L and consequently ] = L1-' for some 4 . Hen-
ce the largest element 4 of D im, from the definition of
D , the least upper bound of the members of X . Thus X
has a least upper bound, with respect to the natural partial
ordering £, , and consequently (B, +,-) 1is complete.
Next suppose ( B, +, ) 4is not atomic. Then there exists
a reB, & 4+ 0, such that if a + 0 eand @ <, & then
@ 4is not an atom of B . Hence, by the Hausdorff maximali-
ty principle, there exists in B , with respect to £, , a
meximal descending chain ( from &,... £, ay %,..%5a, = £,
such thet each ay + 0 and Aa; = 0.Let H=4h lh;eB
and a4, <,%,; for some ay of the chain ) C3%¥ . For each g2,
q € B , define s = g 1f-and only if there exist 4,
teB anden h; , hye H such that po= b » +t, ¢=
= 91/3‘/0 +t , eand f £, q . Again, £ 4is a compatible par-
tial ordering of (B, +, ) and no element not in H 1is
comparable with an element of H . Thus, from compatibility
and the hypothesis on each such poset (B, £) y there ex-
ists a Boolean lattice L; in (B, <) such that H=1Lj; .
Hence (B, +,+) is atomic since Aa; = 0. contradicts
the fact that the smallest element ¥ of H  has the pro-
perty that 2z # 0 . Therefore (B, +, ) is isomorph-
ic to the algebra of all subsets of some set U . Thus, with-
out loss of generality, we may assume that B = P(U) and
that + and « denote, respectively, set union and set in-
tersection, Finally we want to show that (B, +,.) is fi-
nite., Assume that Ul 1is an infinite set. Let M  denote

- 237 -



the collection of all members of B  which are finite sub-
sets of Il . Define fn £ q  if and only if there exist a
teB andanm;,meM such that p=my +t, ¢ =

a compatible partial ordering of (B, +, ) and that no

=m;+t, and}» %, q . Again we can conclude that <« 1is

element not in M is comparable with an element of M .
Thus, from compatibility and the hypotheels on (B, <) <the-
re exists a Boolean lattice Lg, in (B, <) such that

M = Ly . Hence some finite subset of 1L is the largest ele-
ment in M  and this is not pomsible mince < coincides

with £, 4in M and Ul 4is infinite., Therefore (B, +, - )
is finite.

Theorem 3, If (B, +, -) 1is a finite Boolean algebra

of cardinality 2™ <then the number of compatible partial
orderings in (B, +, -) 1s 3™

Proof. For each (ox,3)eBxB with w+f3=1, R(£)=
={(x, ) (x+4)B+xyp=x and (x+4)ec + x4y = 4§ 1is a compa-
tible partial ordering in B such that « is maximal,
is minimal, and 3 <« 4 £ « . Hence by Theorem 1 and the
preceding statement, the enumeration of the eompatible par-
tial orderings in (B, +, ¢) is reduced to determining the
cardinality of the set S={(x,4)(x,4) e B =xB and
X + 4 =41% . The task of counting the number of elements in
S 4is accomplished by referring to the associated Boolean
lattice (B,X:, (£)) of (B, +,°) . Por each element X
of dimension %, 0% % <€ m ,in (B,R,(&)) there are Dind
elements 4 in B such that x + 4 = 4 . Thus, since there
are C, o elements in (B,R,(4)) which hsve dimension % ,
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there are 2% Cm,m oOrdered pairs (x,4)eB xB  such that
X has dimension % and x + 4 = 4 . Henca the cardinality
~n
L 2 m
of 5 18 u§02 Coge =37 .
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