Commentationes Mathematicae Universitatis Caroline

Stanislav Palúch
The lattices of numerations of theories containing Peano's arithmetic

Commentationes Mathematicae Universitatis Carolinae, Vol. 14 (1973), No. 2, 339--359
Persistent URL: http://dml.cz/dmlcz/105495

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1973

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae

$$
14,2 \text { (1973) }
$$

THE LATTICES OF NUMERATIONS OF THEORIES CONTAINING
PEANO 'S ARITHMETIC
Stanislav PALÚCH, Žilina

Abstract: Studying consistency statements for an arithmetic A one has to decide whether one considers (a) numerations or bi-numerations, (b) PR-formulas or RE-formulas, (c) a particular axiomatization of A or all equivalent axiomatizations. This yields various structures of numerations; all are lattices and have similar properties.

Key words: arithmetization, numeration, bi-numeration, lattice.

AMS: 02G99
Ref. Ž.: 2.669

Introduction. In a theory T containing the Peano 's arithmetic P, many metamathematical notions can be described, i.e. numerated or bi-numerated. Some from them are for example the relation " φ is an axiom of the axiomatic system $\langle I, A\rangle$ ", the relation $\mathcal{B r f}_{A}(\boldsymbol{P}, \mathcal{d})$ meaning " d is the code of a sequence which is the proof of the formula φ in $\langle L, A\rangle$ ", the relation $\mathcal{S N}_{T}(\varphi)$ meaning "the formula Φ is provable in the theory T ", Fmong (Φ) meaning "the formula Φ is a formula of the
language K_{0} "etc. For a bi-numeration \propto of some axiomatization of a theory T, we can construct a formula Prf $f_{\infty}(x, y) \quad$ which is a bi-numeration of the relation Arf $T_{T}(g, d)$ in T, a formula $B_{d}(x)$ which is a numeration of the relation $3 \mu_{T}(\varphi)$, a formula $\operatorname{con} \alpha$ expressing formal consistency of T etc.

For two different bi-numerations α_{1}, α_{2} of an axiomatization A of the theory T, we need not have $T \vdash \alpha_{1}(x) \equiv \alpha_{2}(x)$; we can even find bi-numerations α_{1}, α_{2} for which $T \vdash \not \subset \alpha_{1}(x) \longrightarrow \propto_{2}(x)$. On the basis of this fact we can construct - on any set θ of some numerations or bi-numerations of the theory T in itself an ordering \leqslant_{T} defined as follows: $\alpha \leqslant_{T} \beta$ iff $T \vdash \operatorname{Con}_{\beta} \rightarrow \operatorname{Con}_{\infty}$. The equivalence $\equiv T$ is defined as follows: $\alpha \underline{E}_{T} \beta$ iff $\alpha \leqslant_{T} \beta$ and $\beta \leqslant_{T} \alpha$. Let us denote by $\langle\Theta\rangle$ the decomposition of the set Θ into equivalence classes w.r.t. $\equiv \boldsymbol{T}$. We define the following relation \leq_{T} on the set $\langle\theta\rangle:[\alpha] \leq{ }_{T}[\beta]$ iff $\alpha \leq T \beta$, where $[\alpha]$ is the class of $\langle\theta\rangle$ such that $\propto \in[\alpha]$. This structure, where Θ was the set of all PR-bi-numerations of one fixed axiomatization of a theory I satisfying certain conditions, was studied by M. Hájko$v a$ in [2]. She has proved that $(\langle\theta\rangle,\langle T)$ is a lattice with various interesting properties.

The results of [2] seem to support the conjecture that there is no natural bi-numeration of the Peano s arithmetic P in the following sense: In the lattice of all PR-bi-numerations of a primitive recursive aximatization of P, no
element is Σ_{1}-definable and the hypothesis is that no element is definable.

The class of PR-bi-numerations can be considered as the class of reasonable (simplest) bi-numerations. But it is not necessary to restrict ourselves to this particular case; there are other reasonable possibilities. We can get them by altering the following fundamental parameters:

1. The type of formalization. We can consider the set θ as the set of all bi-numerations or as the set of all numerations.
2. The type of formulas. We admit two fundamental types of formulas corresponding syntactically to primitive recursive sets and recursively enumerable sets respectively, namely PR-formulas and RE-formulas.
3. The number of formalized axiomatizations. We can consider © as the set of formalizations of one fixed axiomatization of a theory T or as the set of formalizations of all axiomatizations of a theory T. We restrict ourselves to recursively enumerable axiomatizations.

Each of the mentioned parameters can take two different values. Thus we get 8 combinations and every combination defines some set of formalizations of the theory T in itself. In this paper, we consider all these sets with the ordering $\leq T$. We show that all structures have very similar properties, some from them are even isomorphic.

The reader is expected to be familiar with the Feferman's paper [1] (§§ $2-5$ and a part of § 7) and, in parti-
cular, with the paper [2] of M. Hájkova; this work is very closely connected with [2].

I am thankful to P. Hájek for his kind encouragement and help with the organization of the results and translation of the present paper.

§ 1. Definitions and statements

An axiomatic system is a pair $a=\langle I, A\rangle$, where L is a language and A a subset of the set of all formulas of L. We say that a formula φ is provable in O if it is provable from the set $a x_{L} \cup A$ (where $a x_{L}$ is the set of all logical axioms in the language L, see [1]) by means of predicate calculus. A theory T is a pair 〈L,B〉 where L is a language, $B \subseteq F m_{L}$ ($F m_{L}$ is the set of all formulas of the language 1) and B is closed w.r.t. provability, i.t. $B=\mathcal{P} r_{B}$. Every set of formulas $A \subseteq F_{m_{L}}$ such that $B=P r_{A}$ will be called an axiomatization of T. We shall say that a formula φ is provable in T if $\varphi \in \mathrm{B}$. In this case we shall write $\mathfrak{B r}_{\mathrm{B}}(\varphi)$ or $\mathcal{M}_{\boldsymbol{T}}(\varphi)$ or $\mathrm{T} \vdash \varphi$. It is easily seen that every axiomatic system $C=\langle L, A\rangle$ defines a theory $T=\left\langle I, \operatorname{Pr}_{A}\right\rangle$.

Convention. We shall write

instead of

We shall write $\operatorname{Fm}^{*}(x)$ instead of $\operatorname{Fm}_{\mathrm{L}}^{K_{L}}(x)$, in other cases we shall use the same notation as in [2].
1.1. Definition. Let Ω be an arbitrary set of formulas of a theory T and let A be an axiomatization of T. We define:
$\operatorname{Bin}_{T}^{\infty}(\Omega)=\{\alpha ; \alpha \in \Omega, \propto$ is a bi-numeration of some axiomatization of T in $T\}$.
$\operatorname{Num}_{T}^{\infty}(\Omega)=\{\propto ; \propto \in \Omega, \propto$ is a numeration of some axiomatization of T in $T\}$.
$\operatorname{Bin}_{T}^{A}(\Omega)=\{\propto ; \propto \in \Omega, \propto \quad$ is a bi-numeration of the axiomatization A of T in $T\}$.
$\operatorname{Numn}_{T}^{A}(\Omega)=\{\propto ; \alpha \in \Omega, \alpha \quad$ is a numeration of the axiomatization \mathcal{A} of T in $T\}$.
1.2. Remark. The sets defined in this definition can be empty. For example if A is an axiomatization of the Peano s arithmetic which is not primitive recursive then the set $\operatorname{Bin}_{T}^{A}(P R) \quad$ is empty because every PR-formula is a binumeration of a primitive recursive set in P -
1.3. Lemma. Let T be a consistent theory and let \mathcal{A} be an axiomatization of T. Then

1) $\operatorname{Bin}_{T}^{\infty}(\Omega) \subseteq \operatorname{Num}_{T}^{\infty}(\Omega)$,
2) $\quad \operatorname{Bin}_{T}^{A}(\Omega) \subseteq \operatorname{Num}_{T}^{A}(\Omega)$.

Proof: The statement is clear when we realize that every bi-numeration of A in T is a numeration of A in T if T is consistent.
1.4. Definition and lemma. Let θ be an arbitrary set of bi-numerations or numerations of some axiomatizations of T in T. For $\alpha, \beta \in \theta$ we define $\alpha \leq_{T} \beta$ iff $T \vdash \operatorname{con} \beta \rightarrow \operatorname{con}_{\alpha}, \alpha \equiv T \quad$ iff $\alpha \leq T \beta$ and $\beta \leq T$ $\leqslant_{T} \propto$. The relation $\leqslant \boldsymbol{T}$ is reflexive and transitive it is a quasi-ordering on θ. The relation $\equiv_{\boldsymbol{T}}$ is an equivalence on θ. Denote by $\langle\theta\rangle$ the decomposition of © into equivalence classes w.r.t. \equiv_{T}. For $\alpha \in \theta$, $[\alpha]\langle\theta\rangle$ denotes the element of $\langle\theta\rangle$ for which $\alpha \in$ $\in[\alpha]\langle\theta\rangle$. It is clear that $[\alpha]_{\langle\theta\rangle}=[\beta]_{\langle\theta\rangle}$ iff $T \vdash \operatorname{Co} n_{\alpha} \equiv \operatorname{Con} n_{\beta}$. The relation $\leq T, \theta$ is defined on $\langle\theta\rangle$ as follows: $[\alpha]_{\langle\theta\rangle} \leqslant T_{T, \theta}[\beta]\langle\theta\rangle$ iff $\alpha \leqslant_{T} \beta$. It is defined correctly because if $\left[\alpha_{1}\right]_{\langle\theta\rangle}=[\alpha]_{\langle\theta\rangle},\left[\beta_{1}\right]_{\langle\theta\rangle}=$
$=[\beta]_{\langle\theta\rangle}$ and $[\alpha]_{\langle\theta\rangle} \leq T_{T, \theta}[\beta]_{\langle\theta\rangle}$ then $T \vdash \operatorname{con} \beta_{\beta_{1}} \equiv$
$\equiv \operatorname{Con}_{\beta}, T \vdash \operatorname{Con}_{\alpha_{1}} \equiv \operatorname{Con}_{\alpha}, T \vdash \operatorname{Con} \beta_{\beta} \rightarrow \operatorname{Con} n_{\alpha}$ and hence $T \vdash \operatorname{con}_{\beta_{1}} \rightarrow$
$\rightarrow \operatorname{con}_{\alpha_{1}}$ which is $\left[\alpha_{1}\right]_{\langle\theta\rangle} \leq T_{, \theta}[\beta]\langle\theta\rangle$. Hence the definition of $\leqslant T, \theta$ is independent on the choice of
representatives of the classes $[\alpha]_{\langle\theta\rangle},[\beta]\langle\theta\rangle$. The relation $\leqslant T, \theta$ is an ordering on $\langle\theta\rangle$. In the case when it will not cause any confusion we shall write only $\leqslant T$ instead of $\leq_{T, \theta}$.

The following statement is a reformulation of [1], 4.13:
1.5. Theorem. Let T be an ω-consistent theory, $P \subseteq$ $\subseteq T$. Let \propto be an arbitrary RE-numeration of a recuraively enumerable axiomatization A of T in T. Then we can construct primitive recursive axiomatization \mathcal{A}_{0} of T and its PR-numeration \propto_{0} in T such that $T \vdash \mathcal{P}_{0} \mu_{\infty} \equiv \mathcal{P}_{\varkappa_{0}}$.

This theorem will be the fundamental one for § 2 .
§ 2. The lattice $\left\langle\operatorname{Bin}_{T}^{A}(\mathbb{R E})\right\rangle$ of RE-bi-numerations
In this section we shall assume that

1) T is an ω-consistent theory,
2) T contains Peano's arithmetic P, i.e. $P \subseteq T$,
3) A is a recursive axiomatization of T

Let us note that for T and A satisfying these presumptions $\operatorname{Bin}_{\boldsymbol{T}}^{\hat{A}}(\operatorname{RE}) \quad$ is not empty, because every recursive set is RE-bi-numerable even in P.
2.1. Theorem. In $\left\langle\operatorname{Bin}_{\mathcal{T}}^{\hat{T}}(R E)\right\rangle$ there is no maximal element.
 cause of ω-consistency of T. Let $S=T+C_{8} n_{\alpha}$. Clearly, S is consistent. For \propto we can construct a PR-bi-nu-
meration α_{0} of some axiomatization Λ_{0} of T in T such that $T \vdash P_{p} \mu_{\alpha}(x) \equiv P_{0} \mu_{\alpha_{0}}(x)$. The formula $\beta(x)=\alpha_{0}(x) \cup x \approx \overline{\operatorname{con} n_{\infty}}$ is a PR-bi-numeration of S in S. Let ν_{β} be the Gödel's formula for β constructed by a diagonal construction (see 5.2 in [1]). S is consistent and so $S \nleftarrow \nu_{3}$. By [1] $S \vdash \nu_{\beta} \equiv \neg \mathbb{P}_{\beta}\left(\overline{\nu_{3}}\right)$. Set
$\alpha^{\prime}(x)=\alpha(x) \vee F_{m}^{*}(x) \&(3 y<x)\left(B_{y} f_{\beta}\left(\overline{\nu_{\beta}}, y\right)\right)$.
Then α ' is a RE-formula in T because $P_{\beta} f_{\beta}\left(\overline{\nu_{\beta}}, y\right.$) is a PR-formula in T. For $m \in \mathcal{A}$ we have $T \vdash \alpha(\bar{m})$ and hence $T \vdash \propto(\bar{m})$. If $n \notin A$ then $T \vdash \neg \propto(\bar{m})$ $T \vdash \neg(3 y<\bar{m})\left(P_{\mu f_{\beta}}\left(\bar{\nu}_{\beta}, y\right)\right)$ where from we get $T \vdash \neg \alpha^{\prime}(\bar{m})$. We have shown $\alpha \in \operatorname{Bin} \hat{\tau}(\operatorname{RE})$. From the definition of α^{\prime} we obtain $T \vdash \propto(x) \rightarrow \alpha^{\prime}(x)$ which means $\propto \leqslant T \propto$, We know that $S \vdash \nu_{\beta}$ and hence
(1)

$$
T \not F \operatorname{Cop}_{\alpha} \rightarrow \nu_{\beta} .
$$

We show
(2)

$$
T \vdash \operatorname{con}_{\infty}, \rightarrow \nu_{\beta} .
$$

We have
$T \vdash \neg \nu_{\beta} \rightarrow(\exists y)\left(\operatorname{Pr}_{\beta}\left(\overline{\nu_{\beta}}, y\right)\right)$,
$T \vdash \quad \rightarrow(3 y)(\forall x>y)\left(\alpha^{\prime}(x) \equiv \operatorname{Fm}_{m}^{*}(x)\right)$,
$T \vdash \quad \rightarrow \neg \operatorname{con} \alpha \quad$.
If $\alpha^{\prime} \leq T \propto$, i.e. if $T \longmapsto \operatorname{con}_{\alpha} \rightarrow \operatorname{Con}_{\alpha}$, we obtain $T \vdash \operatorname{Con}_{\infty} \rightarrow \nu_{\beta}$ by (2); but this contradicts (1).

We chall not prove in detail all statements of the paper [2] for the lattice of RE-bi-numerations, but we will show the method how to convert some proofs for $\operatorname{Bin}_{T}^{A_{0}}(P R)$ (where A_{0} is a primitive recursive axiomatization of T) to the proofs of analogous statements for $\operatorname{Bin}_{\boldsymbol{T}}^{\hat{A}}($ RE) . Even if in premises of some theorems for the lattice of PR-bi-numerations the requirement of ω consistency of T did not occur, in premises of analogous theorems for the lattice of RE-bi-numerations this presumption must be added.

Most of the proofs in [2] are performed constructions of the following type: For $\propto \in \operatorname{Bin}_{\top}^{A_{0}}(P R)$ one constructs a formula $F(\propto)$ which preserves the property "to be a PR-formula". Then we set $\alpha^{\prime}(x)=\propto(x) \& F(x)(x)$ or $\alpha(x)=\alpha(x) \vee F(\alpha)(x)$. Clearly, α is a PR-formula. The formula $F(\alpha)(x)$ is constructed in such a way that α^{\prime} has required properties and $\alpha^{\prime} \in \operatorname{Bin} \hat{T}^{A^{\circ}}(P R)$.

The most fundamental properties of $F(\alpha)$ for the proof of the required properties of α depend only on properties of the formula $\mathcal{P r}_{\alpha}(x)$ and in fact that formula Buf $\boldsymbol{\alpha}_{\infty}(x, y)$ bi-numerates Buf $A_{0}(\varphi, d)$ in I . But this procedure often fails when applied to formulas from $\operatorname{Bin} \hat{T}(\mathbb{R})$. The main reason is that F need not save the property "to be an RE-formula".

This obstaele can be removed by the following procedure: For $\alpha \in \operatorname{Bin} \hat{T}$ (RE) , we can construct a primitive recursive axiomatization A_{0} and its PR-bi-numera-
tion α_{0} in T such that $T \vdash P_{0}(x)=\operatorname{Pr}_{\alpha_{0}}(x)$ by the construction described in Theorem 1.5. By our assumptions, T is ω-consistent. For this α_{0} we construct $F\left(\alpha_{0}\right)$ according to the proof of the relevant statement for the lattice of PR-bi-numerations and finally we put
$\propto^{\prime}(x)=\propto(x) \& F\left(\alpha_{0}\right)(x) \quad$ or $\alpha^{\prime}(x)=\propto(x) \vee F\left(x_{0}\right)(x)$. Since α_{0} is a PR-formula, $F\left(\alpha_{0}\right)$ is also a PR-formula. Now it is obvious that \propto ' is an RE-formula in T. Since the fundamental properties of the formula $F\left(\alpha_{0}\right)$ depend on Pr $\alpha_{0}(x)$ and α_{0} was constructed so that $T \longmapsto M \mu_{\alpha} \equiv \mathbb{R}_{\alpha_{0}}$, we can prove that the formulas α and
α^{\prime} are related in the same way as the relevant formulas from $\operatorname{Bin}_{T}^{A_{0}}(P R)$.

In this manner we can convert the proof of the required statement for the lattice of RE-bi-numerations into the proof of the analogous statement for the lattice of PR-bi-numerations. We can illustrate this procedure by the following figure:

Construction
in $\operatorname{Bin}_{T}^{A_{0}}(P R)$

Construction
in $\operatorname{Bin}_{T}^{A}(R E)$

Thus we can prove the following theorem (numbers of the corresponding statements from [2] for the lattice of PR-binumerations are in brackets):

2．2．Theorem．If T is a reflexive theory then in $\left\langle\operatorname{Bin}_{\mathrm{T}}^{\hat{1}}(R E)\right\rangle \quad$ there is no minimal element．

2．3．Theorem［2．11］．For each $\alpha, \beta \in \operatorname{Bin}_{\boldsymbol{T}}^{\hat{A}}(\mathbb{R E})$ ， $\alpha \leq{ }_{T} \beta$ iff there is a $\beta^{\prime} \in \operatorname{Bin}_{\hat{T}}(R E)$ such that

1）$\quad \beta=\tau \beta^{\prime}$ ，
2）$\quad T \vdash \propto(x) \longrightarrow \beta^{\prime}(x)$ ．
2．4．Theorem［2．12］．For each $\alpha_{1}, \alpha_{2} \in \operatorname{Bin} \hat{\tau}(\mathbb{R E})$ if $\alpha_{1}<\alpha_{T} \alpha_{2}$ then there is an $\propto \in \operatorname{Bin} \hat{T}(R E)$ such that $\alpha_{1} \ll_{T}<\alpha_{2}$ ．

2．5．Theorem［2．14］．Let T be a reflexive theory． Then for each $\alpha \in \operatorname{Bin} \hat{T}(R E)$ there is an
 $\propto ⿻ 三 丨_{T} \alpha^{\prime}$ 。

2．6．Theorem［2．19］，［2．21］．In $\left\langle\operatorname{Bin}_{\tau}^{\wedge}(R E)\right\rangle$ every pair $[\alpha]\langle\operatorname{Bin} \hat{\uparrow}(R E)\rangle,[\beta]\langle\operatorname{Bin} \hat{\uparrow}(R E)\rangle$ has the maximum and the infimum．

2．7．Corollary $[2,20,2.22]$ ．Let $\alpha_{1}, \alpha_{2}, \alpha \in \operatorname{Bin} \hat{\uparrow}(\mathbb{R E})$ ； then $[\alpha]\langle\operatorname{Bin} \hat{\uparrow}(R E)\rangle \quad$ is the supremum and infimum of the pair $\left[\alpha_{1}{ }^{]}\langle\operatorname{Bin} \hat{\uparrow}(R E)\rangle, \quad\left[\alpha_{2}{ }^{]}\langle\operatorname{Bin} \hat{\uparrow}(R E)\rangle\right.\right.$ respecti－
 respectively．

This enables us to define on $\left\langle\operatorname{Bin}_{\boldsymbol{T}}^{\hat{1}}(\mathbb{B E})\right\rangle$ the opera－
tions of join u and meet n similarly as in [2], 2.23.
2.8. Sumary. From Corollary 2.7 it follows that $\left\langle\operatorname{Bin}_{\uparrow}^{A}(\mathbb{R})\right\rangle \quad$ with operations $u, n \quad$ is a distributive lattice which has no maximal element and if, in addition, T is reflexive, it has no minimal element.

A very important theorem of the paper [2] is Theorem 3.9 on Σ_{1}-nondefinability. The reader verifies easily that the whole proof of [2], 3.9 works also for 〈 \langle in $\hat{\tau}(R E)\rangle$ if modified according to our Figure. Thus we have the following
2.9. Theorem on Σ_{1}-non-definability [3.9]. Let T be reflexive. Then no se -tuple of elements of $\langle\operatorname{Bin} \underset{T}{A}(R E)\rangle$ is Σ_{1}-definable in $\left\langle\operatorname{Bin}_{T} \hat{T}(\mathbb{E})\right\rangle$.

8 3. The lattices of numerationg
In § 2 we have shown that $\left\langle\operatorname{Bin} \mathcal{T}_{\top}(R E)\right\rangle$ is a lattice with various interesting properties. In this section we shall study the relations between the structures
$\left\langle\operatorname{Num}_{\top}^{A}(\operatorname{BE})\right\rangle,\left\langle\operatorname{Bin}_{\top}^{\hat{A}}(\operatorname{RE})\right\rangle,\left\langle\operatorname{Num}_{T}^{\infty}(\operatorname{RE})\right\rangle$,
$\left\langle\operatorname{Bin}_{T}^{\infty}(R E)\right\rangle,\left\langle\operatorname{Bin}_{T}^{\infty}(P R)\right\rangle,\left\langle\operatorname{Bin} \hat{T}_{T}(P R)\right\rangle$.
We shall show that all these structures are lattices and that they are mutually isomorphic except $\langle\operatorname{Bin} \hat{T}(P R)\rangle$. In this section we shall assume that T is primitively recursively axiomatizable, $\boldsymbol{\omega}$-consistent and that $P \subseteq T$.
3.1. Lemma. The following equation holds:

$$
\operatorname{Bin}_{T}^{\infty}(P R)=\operatorname{Num}_{T}^{\infty}(P R) .
$$

If \mathcal{A} is a primitive recursive axiomatization of T then

$$
\left.\operatorname{Bin} \hat{T}(P R)=\operatorname{Num}_{\uparrow} \hat{T}^{(P R}\right) \text {. }
$$

Proof: Since T is primitively recursively axiomatizable, the structures $\operatorname{Bin} \sim_{T}^{\infty}(P R)$, $\operatorname{Num}_{T}^{\infty}(P R)$ are not empty. T is a consistent theory and therefore by Lemma 1.3 we have $\operatorname{Bin} \hat{T}(P R) \subseteq \operatorname{Num}_{\hat{T}}(P R)$. Let \propto be a PR-numeration of an axiomatization \mathcal{A} of T in T. We have $n \in \mathcal{A}$ iff $T \vdash \propto(\bar{m})$. Every PR-formula is a bi-numeration of a certain primitive recursive set $\boldsymbol{\pi}$ even in P and hence in T. Hence we have $m \in \mathbb{A} \Longrightarrow T \vdash \propto(\bar{m})$, $n \notin \mathbb{A} \Rightarrow T \vdash \neg \propto(\bar{m})$. From the consistency of T it follows that $A=\bar{A}$.

Now we shall prove the fundamental statement for this section.
3.2. Theorem. Let Λ_{2} be an arbitrary fixed recursively enumerable axiomatization of T. Then for every recursively enumerable axiomatization A_{1} of T and for an arbitrary RE-numeration α_{1} of $\boldsymbol{\Lambda}_{1}$ in T we can construct an REnumeration α_{2} of A_{2} such that the following holds:

$$
\begin{equation*}
T \vdash \cos \alpha_{\alpha_{1}} \equiv \operatorname{con} \alpha_{2} \tag{1}
\end{equation*}
$$

If in addition $\operatorname{Bin}_{T}^{A_{2}}\left(\mathbb{R} E\right.$) is not empty (that is \boldsymbol{A}_{2} is recursive) then for every RE-numeration α_{1} of \boldsymbol{A}_{1} in T we can construct an RE-bi-numeration α_{2} of A_{2} in T so
that (1) holds.
Proof: Let α_{00} be an arbitrary RE-numeration (RE-bi-numeration if A_{2} is recursive) of A_{2} in T. We put $\alpha_{0}(x)=\alpha_{00}(x) \& \mathcal{P}_{f=1}(x)$. As $\alpha_{00}(x)$ and $P_{p} \alpha_{\alpha_{1}}(x)$ are RE-formulas in $T, \alpha_{0}(x)$ is also an RE-formula in T. We show that \propto_{0} numerates (bi-numerates) A_{2} in T.
Let $m \in A_{2}$. Then $T \vdash \alpha_{00}(\bar{n})$ and $T \vdash m$, hence $T \vdash \mathcal{P}_{p \alpha_{1}}(\bar{n})$, and consequently $T \vdash \alpha_{00}(\bar{n}) \& \mathcal{P r}_{\alpha_{1}}(\bar{n})$. Let $n \notin \mathcal{A}_{2}$. Then $T \nleftarrow \alpha_{00}(\bar{n})$ and hence $T \nleftarrow \alpha_{00}(\bar{n}) \&$ \& $P_{1} r_{\alpha_{1}}(\bar{m})$. If in addition α_{00} bi-numerates A_{2} in T then $T \vdash \neg \alpha_{00}(\bar{m})$ and hence $T \vdash \neg \propto_{00}(\bar{m}) \& P_{p} \alpha_{1}(\bar{m})$. The following sequence of statements is provable:

$$
\begin{aligned}
& T \vdash \neg \operatorname{Con}_{\alpha_{0}} \equiv \operatorname{Per}_{\alpha_{0}}(\bar{\sigma} \approx 1), \\
& T \vdash \quad \equiv \mathcal{P}_{\alpha_{0}} \& \mathcal{S}_{\alpha_{\alpha_{1}}}(\bar{\sigma} \approx 1) \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& T \vdash \quad \rightarrow \neg \operatorname{con}_{\alpha_{1}} \text {. }
\end{aligned}
$$

From this we get

$$
\begin{equation*}
T \vdash \operatorname{con}_{\alpha_{1}} \rightarrow \operatorname{con}_{\alpha_{0}} \tag{1}
\end{equation*}
$$

According to Theorem 1.5, we construct a PR-formula α_{1}^{\prime} for the formula α_{1} such that $T \vdash \mathbb{P}_{\alpha_{\alpha_{1}}} \equiv \mathcal{P}_{\alpha_{1}}$. Finaliy we put:

$$
\alpha_{2}(x)=\alpha_{0}(x) \vee F_{m} *(x) \&(3 y<x)\left(\operatorname{Puff}_{x_{1}}(\overline{0 \approx 1}, y)\right) .
$$

The following gequence of implications holds:
$I \vdash \neg \operatorname{Con}_{\alpha_{1}} \rightarrow(3 y)\left(3 \alpha_{\alpha_{1}}(\overline{D \approx 1}, y)\right)$,
$T \vdash \quad \rightarrow(\exists y)\left(\operatorname{Suf}_{\alpha_{1}^{\prime}}(\overline{0 \approx 1}, y)\right)$,
To $\quad \rightarrow(3 y)(\forall x>y)(3 x<x)\left(\mathcal{P}_{y} f_{\alpha_{1}}(\overline{0 \sim 1}, x)\right)$.
From this we get $T \vdash \neg \operatorname{Con}_{\alpha_{1} \rightarrow} \rightarrow(3 y)(\forall x>y)\left(\alpha_{2}(x)=\operatorname{Fim}^{*}(x)\right)$.
It is easy to see that $T \vdash(3 y)(\forall x>y)\left(x_{2}(x) \equiv \operatorname{Fm}(x)\right) \rightarrow$
$\rightarrow \neg \operatorname{con} n_{x_{2}}$ and hence $T \vdash \neg \operatorname{con} x_{\alpha_{1}} \rightarrow \neg \operatorname{con}_{\alpha_{2}}$, which implies
(2)

$$
I \vdash \operatorname{con} \alpha_{\alpha_{2}} \rightarrow \operatorname{cog}_{\alpha_{1}}
$$

We prove $T \vdash \operatorname{Con}_{\alpha_{1}} \rightarrow \operatorname{Con}_{\alpha_{2}}$.
It holds:

$$
\begin{array}{ll}
T \vdash \operatorname{con}_{\infty_{1}} & \rightarrow(\neg \exists y)\left(3 x f_{\alpha_{1}}(\overline{0 \approx 1}, y)\right), \\
T \vdash & \rightarrow(\neg \exists y)\left(\operatorname{Suf}_{x_{1}}(\overline{0 \approx 1}, y)\right), \\
T \vdash & \rightarrow \alpha_{2}(x) \equiv \alpha_{0}(x), \\
T \vdash & \rightarrow\left(\operatorname{con}{\alpha_{0}} \rightarrow \operatorname{con}_{\alpha_{2}}\right) .
\end{array}
$$

Consequently, $T \vdash \operatorname{Con} n_{\alpha_{1}} \rightarrow\left(\operatorname{con} \alpha_{\alpha_{0}} \rightarrow \operatorname{Con}_{\alpha_{2}}\right)$, from which we obtain

$$
T \vdash\left(\operatorname{con} \alpha_{\alpha_{1}} \rightarrow \operatorname{con}_{\alpha_{0}}\right) \rightarrow\left(\operatorname{con}_{x_{1}} \rightarrow \operatorname{con}_{\alpha_{\alpha_{2}}}\right)
$$

The last statement gives $T \vdash \operatorname{con} n_{\alpha_{1}} \rightarrow \operatorname{con}_{\alpha_{2}}$ by (1).
Now it is necessary to prove that α_{2} RE-numerates (RE-bi-numerates) A_{2} in T. Clearly, α_{2} is a RE-formula in T. Suppose $n \in A_{2}$. Then $T \vdash \alpha_{0}(\bar{m})$ because α_{0} is nomeration of A_{2} in T and hence $T \vdash \alpha_{n}(\bar{m})$ by the con-
struction of α_{2}. Since $P_{p x \alpha_{1}}(x, y)$ is a PR-formula in T we have the following for each integer m : $T \vdash \operatorname{Pofr}_{\alpha_{1}^{\prime}}(\overline{0 \sim 1}, \bar{m})$ or $T \vdash \neg \mathcal{B}_{\mu f_{\alpha_{1}^{\prime}}}(\overline{0 \sim 1}, \bar{m})$. Since T is consistent, we have $T \nvdash P P_{0} \propto_{1}(\overline{0 \approx 1}, \bar{m})$ and hence $\quad T \vdash \neg \operatorname{Bef}_{\propto_{1}}(\overline{0 \approx 1}, \bar{m})$ for each m. From this it follows that

$$
\begin{equation*}
T \vdash \neg(3 y<\bar{m})\left(\operatorname{Buf}_{\alpha_{1}^{\prime}}(\overline{0 \approx 1}, y)\right) \tag{3}
\end{equation*}
$$

and by the consistency of T we have

$$
\begin{equation*}
\text { Tra }(3 y<\bar{m})\left(\operatorname{Prf}_{0} x_{1}(\overline{0 \approx 1}, y)\right) \tag{4}
\end{equation*}
$$

for each integer m.
Suppose $n \notin A$; then T ra $\alpha_{0}(\bar{n})$ and by (4) we have THA $\alpha_{2}(\bar{m})$. If in addition α_{00} was a bi-numeration of A in T, \propto_{0} has also this property and $\left.T \vdash\right\urcorner \propto_{0}(\bar{m})$. By (3) we have $I \vdash \neg \propto_{2}(\bar{m})$.
3.3. Theorem. Let A_{1}, A_{2} be recursively enumerable axiomatizations of T.

1) There exists an isomorphism of $\left\langle\mathrm{Num}_{\uparrow}(R E)\right\rangle$ and $\left\langle\operatorname{Num}_{T}^{A_{2}}(R E)\right\rangle$. We write $\left\langle\operatorname{Num}_{T}^{A_{1}}(R E)\right\rangle \approx\left\langle N_{\mu} A_{T}^{A_{2}}(R E)\right\rangle$.
2) If in addition $\operatorname{Bin}_{T}^{A_{2}}(R E) \neq 0$, i.e. if A_{2} is recursive, then $\left\langle\operatorname{Num}_{T}^{A_{1}}(R E)\right\rangle \approx\left\langle\operatorname{Bin}_{T}^{A_{2}}(R E)\right\rangle$.

$$
\text { 3) If } \operatorname{Bin}_{T}^{A_{1}}(R E) \neq 0 \text { and } \operatorname{Bin}_{T}^{A_{2}}(\mathbb{E}) \neq 0
$$

then
$\left\langle\operatorname{Bin}_{T}^{A_{1}}(R E)\right\rangle \approx\left\langle\operatorname{Bin}_{T}^{A_{2}}(R E)\right\rangle$.
Proof: According to Theorem 3.2 for every
$\alpha_{1} \in \operatorname{Num}_{T}^{A_{1}}(R E)$ we can construct an $\alpha_{2} \in \operatorname{Num}_{T}^{A_{2}}(\mathbb{R E})$
so that $T \vdash \operatorname{Con} n_{\alpha_{1}} \equiv \operatorname{Con} n_{\alpha_{2}}$. Denote by f the mapping which assigns the formula $f\left(\alpha_{1}\right)$ constructed in the proof of Theorem 3.2, for each formula α_{1}. We define a function $G:\left\langle\operatorname{Num}_{T}^{A_{1}}(B E)\right\rangle \rightarrow\left\langle\operatorname{Num}_{T}^{A_{2}}(R E)\right\rangle$ in the follo-

We must prove that G is correctly defined, i.e. that G is one-one, onto, and preserves the ordering \leq_{T}.
a) G is correctly defined. Let $\left[\alpha_{1}\right]\left\langle\operatorname{Num}_{\top} \mathcal{A}^{1}(R E)\right\rangle=$
$\left.=\left[\alpha_{1}^{\prime}\right]_{\langle\text {Num }}^{T} A_{1}(R E)\right\rangle ; \quad$ then $T \vdash \operatorname{Con} \alpha_{\alpha_{1}} \equiv \operatorname{Con} \alpha_{\alpha_{1}^{\prime}}$.
From the properties of f we obtain $T \vdash \operatorname{Con}_{\alpha_{1}} \equiv \operatorname{Con}_{f\left(\alpha_{1}\right)}$, $T \vdash \operatorname{Con}\left(\alpha_{1}^{\prime} \equiv \operatorname{Con}_{f\left(x_{1}^{\prime}\right)} \quad\right.$ and hence $T \vdash \operatorname{Con} n_{f\left(\alpha_{1}\right)} \equiv \operatorname{Con}_{f\left(x_{1}^{\prime}\right)}$, which implies

$$
\left[f\left(\alpha_{1}\right)\right]_{\left\langle\operatorname{Num}{\underset{T}{T}}_{A_{2}}(R E)\right\rangle}=\left[f\left(\alpha_{1}^{\prime}\right)\right]_{\left\langle\operatorname{Num}_{T}^{A_{2}}(R E)\right\rangle} .
$$

b) G preserves \leq_{T}. Let $\left[\alpha_{1}\right]_{\left\langle\operatorname{Num}_{T} A_{1}(R E)\right\rangle} \leq_{T}$ $\leqslant_{T}\left[\beta_{1}\right]_{\left\langle\operatorname{Num}_{\tau}^{A_{1}}(R E)\right\rangle}$, i.e. $T \vdash \operatorname{con}_{\beta_{1}} \rightarrow \operatorname{con}_{\alpha_{1}}$. Since $T \vdash \operatorname{Con}_{\beta_{1}} \equiv \operatorname{con}_{f\left(\beta_{1}\right)}$ and $T \vdash \operatorname{con}_{\alpha_{1}} \equiv \operatorname{Con}_{f\left(\alpha_{1}\right)}$ we can write $T \vdash \operatorname{Con}_{f\left(\beta_{1}\right)} \rightarrow \operatorname{Con}_{f\left(\alpha_{1}\right)} \quad$ which implies $G\left(\left[\alpha_{1}\right]_{\left.\left\langle\operatorname{Num}_{T}^{A_{1}}(R E)\right\rangle\right)} \leq_{T} G\left(\left[\beta_{1}\right]_{\left\langle\operatorname{Num}_{T}^{A}(R E)\right\rangle}\right)\right.$.
c) G is onto. For the proof of thie statement it is suffi-
cient to show that for every $\alpha_{2} \in \operatorname{Num}_{T}^{n_{2}}(B E)$ there exists an $\alpha_{1} \in \operatorname{Num}_{T}^{A_{1}}(\mathbb{R} E) \quad$ so that $T 1-\operatorname{Con}{\alpha_{\alpha_{2}}}=\operatorname{Con} \alpha_{\alpha_{1}}$, which is guarenteed by Theorem 3.2.
d) G is one-one. Since $T \vdash \operatorname{Con}_{\alpha_{1}} \equiv \operatorname{Con}_{f\left(x_{1}\right)}$ and $T \vdash \operatorname{Con}_{\beta_{1}} \equiv \operatorname{Con}_{f\left(\beta_{1}\right)}$, we have: $\left.T \vdash \operatorname{Con} \cos _{f}\right) \equiv \operatorname{Con}_{f\left(\beta_{1}\right)}$ iff $T \vdash \operatorname{Con} \alpha_{\alpha_{1}} \equiv \operatorname{Con}_{B_{1}}$.
Analogously for $2,3$.
3.4. Theorem. Let A be a recursively enumerable axiomatization of T. Then

1) $\left\langle\operatorname{Num}_{T}^{\infty}(R E)\right\rangle \approx\left\langle\operatorname{Num}_{T}^{A}(R E)\right\rangle$,
2) $\left\langle\operatorname{Bin}_{T}^{\infty}(R E)\right\rangle \approx\left\langle\operatorname{Num}_{T}^{A}(R E)\right\rangle$,
3) $\left\langle\operatorname{Bin}_{T}^{A}(R E)\right\rangle \neq \varnothing \Rightarrow\left\langle\operatorname{Num}_{T}^{\infty}(R E)\right\rangle \approx\left\langle\operatorname{Bin}_{T}^{A}(R E)\right\rangle$,
4) $\operatorname{Bin}_{T}^{A}(\operatorname{RE}) \neq \varnothing \Rightarrow\left\langle\operatorname{Bin}_{T}^{\infty}(R E)\right\rangle \approx\left\langle\operatorname{Bin}_{T}^{A}(R E)\right\rangle$.

Remark. Since T is primitive recursive axiomatizable, we have the following:
$\operatorname{Num}_{T}^{\infty}(R E) \neq \varnothing, \quad \operatorname{Bin}_{T}^{\infty}(R E) \neq \varnothing, \quad \operatorname{Bin}{ }_{T}^{\infty}(P R) \neq \varnothing$.
Proof of Theorem 3.4: Let $\propto \in$ Num $_{T}^{\infty}(\mathbb{R E})$. By Theorem 3.2 there exists a mapping $f: \operatorname{Num}_{T}^{\infty}(R E) \rightarrow N_{i} m_{\tau}^{A}(R E)$ so that for every $\propto \in \operatorname{Num}_{T}^{\infty}$ (RE) we have TトCon $\operatorname{Con}_{\infty} \equiv \operatorname{Con}_{f(\alpha)}$. Define a mapping $H:\left\langle\operatorname{Num}_{T}^{\infty}(R E)\right\rangle \rightarrow$ $\rightarrow\langle$ Num $\hat{\uparrow}(R E)\rangle$ by the equation

Similarly as in Theorem 3.3 we can prove that G is correct-

1y defined and is an isomorphism. Analogously for 2, 3, 4.

$$
\text { 2) }\left\langle\operatorname{Bin}_{T}^{\infty}(R E)\right\rangle \otimes\left\langle\operatorname{Bin}_{T}^{\infty}(P R)\right\rangle \text {. }
$$

Proof: In the proof of Theorem 1.5, a formula $g(\propto) \subset \operatorname{Bin}_{T}^{\infty}(P R)$ was constructed for every $\propto \in \operatorname{lhm}_{\uparrow}^{*}$ (IE) such that

$$
\begin{equation*}
T \vdash \mathcal{B}_{\alpha}(x) \equiv P_{R_{g}}(x)(x) \text {. } \tag{1}
\end{equation*}
$$

From (1) we have

$$
\begin{equation*}
I \vdash \operatorname{con} x \equiv \operatorname{con}_{g(x)} \tag{2}
\end{equation*}
$$

Define a function $K:\left\langle\operatorname{Num}_{T}^{\infty}(R E)\right\rangle \longrightarrow\left\langle\operatorname{Bin}_{T}^{\infty}(P R)\right\rangle$
by the following equation:
$\left.\left.K\left([\propto]_{\langle\operatorname{Numi}}^{\varphi}(R E)\right\rangle\right)=[g(\alpha)]_{\langle\sin \infty}^{\infty}(P R)\right\rangle$
Similarly as in 3.3 we can prove that K is correctly defined, one-one and that it preserves the ordering \leqslant_{T}.

We have to prove that K is onto. Suppose
 $\varepsilon\left\langle\operatorname{Num}_{T}^{\infty}(\boldsymbol{R} E)\right\rangle$. Since $T \vdash \operatorname{Con}_{\beta} \equiv \operatorname{Cop}_{q}(\beta)$, we have $\left.[\beta]_{\left\langle\operatorname{Bin} \omega_{T}(P R)\right\rangle}=[g(\beta)]_{\langle\operatorname{Bin}}{ }_{\tau}^{\infty}(P R)\right\rangle$ and hence $K([\beta]<\operatorname{Hum} \underset{T}{\infty}(R E)\rangle)=[\beta]\langle\operatorname{Sin} \underset{T}{\infty}(P R)\rangle$.
3.6. Summary. Let Λ_{1}, Λ_{2} be arbitrary recursive enumerable axiomatizations of the theory T. Then the following holds:
$\left\langle\operatorname{Num}_{T}^{A_{1}}(R E)\right\rangle \approx\left\langle\operatorname{Num}_{T}^{A_{2}}(R E)\right\rangle \approx\left\langle\operatorname{Num}_{T}^{\infty}(R E)\right\rangle \approx$ $\approx\left\langle\operatorname{Bin}_{T}^{\infty}(R E)\right\rangle \approx\left\langle\operatorname{Bin}_{T}^{\infty}(P R)\right\rangle=\left\langle\operatorname{Num}_{T}^{\infty}(P R)\right\rangle$.

If in addition $\operatorname{Bin}_{T}^{A_{2}}(R E) \neq 0 \quad$ (that is if A_{2} is recursive) then $\left\langle\operatorname{Bin}_{\boldsymbol{T}}^{\boldsymbol{A}_{2}}(\mathrm{RE})\right\rangle$ is isomorphic with all above mentioned structures.
3.7. Corcllary. All above mentioned structures are lattices. Each of the sbove mentioned structures has the same properties as 〈 $\operatorname{Bin} \underset{T}{A}(R E)\rangle$ which was studied in §2.

An open problem: whether for a primitive recursive axiomatization A of the theory T one has $\left\langle\operatorname{Bin}_{T}^{A}(P R)\right\rangle \approx$ $\approx\left\langle\operatorname{Bin}_{T}^{\infty}(P R)\right\rangle \approx \ldots$ etc. For a proof of this statement it would be sufficient to show that there exists a primitive recursive axiomatization A_{00} of T suck that for every primitive recursive axiomatization A and for arbitrary PR-bi-numeration α of A in T there exists a PR-binumeration \propto_{00} of \mathcal{A}_{0} in T such that

$$
\begin{equation*}
I \vdash \operatorname{con}_{\alpha} \rightarrow \operatorname{con}_{\alpha_{00}} \tag{5}
\end{equation*}
$$

Now we could construct a PR-bi-numeration α_{0} of A_{00} putting $\alpha_{0}=\alpha_{00}(x) \vee \operatorname{Fm}^{*}(x) \&(\exists y<x)\left(\mathcal{P r}_{0} f_{\alpha}(\overline{0 \approx 1}, y)\right)$ according to the second part of the proof of Theorem 3.2 for which we have: $T \vdash \operatorname{con} \alpha \equiv \operatorname{con} \alpha_{0}$. The construction of an isomorphism between $\left\langle\operatorname{Bin}_{T}^{A_{0}}(P R)\right\rangle$ and $\left\langle\operatorname{Bin}_{\boldsymbol{T}}^{\infty}(P \cdot R)\right\rangle \quad$ should be similar as the construction of
the function H in Theorem 3.3. However, I have not succeeded to prove or disprove the existence of α_{00}. To close, let us mention that if we succeed to prove the existence of an isomorphism between $\langle\operatorname{Bin} \hat{\tau}(P R)\rangle$ and $\left\langle\operatorname{Bin}_{T}^{\infty}(P R)\right\rangle$, all studied structures shall have the same properties as lattices. In this case the procedure for converting proofs for $\left\langle\operatorname{Bin}_{T}^{A_{0}}(P R)\right\rangle$ to relevant proofs for $\left\langle\operatorname{Bin}_{T}^{A}(R E)\right\rangle \quad$ will lose its importance.

R eferences

[1] FEFERMAN S.: Arithmetization of metamathematics in a general setting, Fund.Math.XIIX(1960),36-92.
[2] HÁJKOVÁ M.: The lattice of bi-numerations of arithmetic, Comment. Math.Univ.Carolinae 12(1971),81-104,281306.
[3] MENDELSON E.: Introduction to mathematical logic, Moskva,1971.
[4] TARSKI A., MOSTOWSKI A., ROBINSON R.M.: Undecidable theories, Amsterdam,1953.

VUD
Žilina
Československo

