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STRONG EMBEDDINGS INTO CATEGORIES OF ALGEBRAS OVER A MONAD,
I.
Ji?f ROSICKY, Brno

Abstract: Hedrlin, Isbell, Kulera, Pultr, Trnkové and
others have intensively 1nvest1gated full and strong embed-
dings of concrete categories into categories of algebras.
This paper considers the posslblllty of replacing usual ca-
tegories of algebras by equational and varietal categories
in the sense of Linton. All considerations are carried out
for an arbitrary category in the place of the category of
sets.

Key words: Equational category, varietal category, U-
algebra, monad, algebra over a monad, full embedding, strong
embedding, Kan extension, Beck s theorem, absolute limit,
split coequalizer.

AMS: 18B15, 18C99 Ref. Z. 2.725.11,2.725.3.
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Full embeddings of concrete categories into categories
of algebras were investigated in many papers (e.g. [51,[6],
[71 or [(181). In these papers, categories of algebras are
categories YUC(A) of all algebras of the type A and
their homomorphisms, where A = (xplpecy is a set of or-
dinals indexed by ordinals. Thus categories, such as the ca-
tegory of complete semilattices, complete Boolean algebras
and complete homomorphisms or the category of compact Haus-
"dorff spaces and continuous mappings, which are defined by
operations, are not categories of algebras in this sense

because they are without a rank (the supremum of arities
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of operations used). Kulera and Hedrlin proved in 1969 (see
[91) that any concrete category can be fully embedded into

some < (A) under the assumption

(M) There is a cardinal m such that every ultrafilter clo-

sed under intersections of m elements is trivial.

Under mon (M) , the category of compact Hausdorff spaces

and the category of complete Boolean algebras cannot be ful-
ly embedded into any <L (A) (see [10}). It seems that

the appearance of the axiom (M) is caused by the fact that
the categories €L (4A) have a rank. The result of V. Trn-
kovd quoted in [9] implies that any concrete category can be
fully embedded into a category of "algebras" without a rank.
Thus it is reasonable to consider full embeddings into so ge-
neral categories of algebras to include categories of algeb-
ras without a rank. It is natural to take algebras over a
monad or algebras in the sense of Linton ([12]). The investi-
gation can be carried out for algebras over arbitrary cate-
gories and not only for algebras over the category Ems

of sets.

We shall neéd the following géneralization of the notion
of a concrete category. A pair (M ,U) consisting of a ca-
tegory M and a faithful functor W: M—>A is called a
category structured over the category A (see [2]). Since
the full embeddability into categories of algebras is not a
suitable criterium of "algebraicity", a special class of full
embeddings, so called strong embeddings, was defined and
dealt with in [18) and [19]. We extend this definition to a

general base category A . Further, we introduce nice embed-
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dings which turn out to share many properties of strong em-
eddings with respect to the “algebraicity". Again, they were
actually defined in [19] in a special case,

Tat (M,U) be a category structured over a category

A, (N,¥) over B and P:A—> 3B a functor. A full em~

the diagram
M

bedding H: M—> N is called an F -strong embedding if
H
u
A———

N
lw
P B

commutes. If H is an P -strong embedding for some F :
:A—> B, then it is called a strong embedding (see [18]
for A=B=Emp ). An Id, -strong embedding is called
a realization (see [16] for A=Ems or [2] under the name
of a structural functor). An embedding H:M—> N for
which WH =PU is called an F -nice embedding if H is
as full as P i.e. if £: Hm —> Hm' is an arrow in N
such that We = P£, for some f;: Um —>Um’ jthen £ = Hf"
for some £';: m —»m’ in M . A nice embedding is that
which is P -nice for some F .

We can add that pairs P, H of functors F: A— B,
H:M—> N such that FU=WH are arrows of the cate-
gory of structured categories considered as a full subcate-~
gory of the category of arrows of the category of categories.

In § 1 we recall the notions of a Kan extension, an al-
gebra over a monad and an algebra in the sense of Linton,

In § 2, P -strong and F -nice embedding are considered. For
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a category (M,U) structured over A and F:A—> B the-
~re is constructed a canonical embedding into a category of
algebras over B which turns out to be P -strong ( F -ni~
ce) whenever an P -strong ( P -nice) embedding into a ca-
tegory of algebras over B exists. Nice embeddability of
(M,U) into a category of algebras makes U to reflect
some limits and colimits and if U has an adjoint, then
such a reflection is sufficient for this embeddability as
it is shown in § 3. In § 4, we consider in more detail the

case A=Emp and we touch full embeddings in general case.

§ 1. Preliminaries.

All necessary concepts from the theory of categories
can be found in [14], We recall some of them. Notation used
here is taken from [14]. ACa,%’) fora,® e A is the set
of all arrows @ —» & in a category A . A natural transfor-
mation o~ from a functor S to R is denoted by x: S—> X
and Nat (S,R) is the family of all natural transformations
from § to R/ . By a functor, a covariant one is meant.

Given functors X:M—> C and T: M—>A ,a right
Kan extension of T along K is a pair Rany T=R: C—A,
e:RK—=—» T such that for each pair S: C—> A ,

o SK~—=>T there is a unique natural transformation
G: S\;’R such that x =€ - 8K: SK—=» T . The as-
signment & —> €.8X is a bijection Not (S,R) &
= Nat(SX,T) natural in S ; again, this natural bijection
determines X from X and T . Let (e 4X) for c€ C be
the comma category and @ : (¢4 X)~—» M the projection.
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(c V1K) has objects {f,m >, where f:c—>Xm 1is an
arrow in C and arrows h : <f,m>—><£’,m')> are those ar-

rows h:m —>m’ in M i?or which £'= X(R)f. G is de-

fined by
(E,m) b——————m,
. S
(g'\m> ¢t > m®
If the composite (c«l«K)—a-» M.-T-—B»A has for each ce C a

limit in A , then R exists and Re = Lim (e4X)%5 M-TsA) for

each ¢ ¢ C ., It is the most frequent case of the appearance
of R and this R is called a pointwise right Kan extension.

Let X be a category. Define a category I§ called the

’
subdivision category of X . The objects of .x’ are all sym-

bols .x§ and £% for xeX and £ an arrow in X . The ar-
§

rows of X are the identity arrows for these objects, plus
for each arrow f: x—» 4 in X two arrows xg——» fi—q. § .
The only meaningful compositions for these arrows in X § are
the compositions with one factor an identity arrow. Let xeor
be the opposite (dual) category for X ,Y another category
and D X‘Wx X—s»Y a functor. Then D defines a func-

tor D§: X§ —_sY by the assignments indicated in the

following figure for a typical f; x~—»qg in X :
x§ 5 £§ '&‘

y D) Deg) o M Dy, £)

- 703 -
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If the functor D§ admits a limit, then this limit is cal-

led an end of D: X = X — ¥ and is denoted by

[pex,x) .
X

Let XK:M—>C, T: M—> A  and for all m’', m e M
and all ¢ € C the power Tnt ‘“*™") exists. Then

- '
(mv',rm) TmC( yKm')

is (the object function of) a
functor M°" .M.——»Ac . Further, T has a right Kan exten-
sion along X if and only if this functor has an end, and

Cc(-, K
this end is the Kan extension KntnKTa me (= Km (Ulmer,
m

see [14], p. 239 ex. 5).

A monad T=<T,n,«Y in a category A consists of a
functor T: A—s>A and two natural transformations 4 :
:ldp—=>T , w: T2~ 5> T such that @ T=1d,, - -Ty=
=ldy and w.Tw = @-«T . An algebra over T (or
briefly a T -algebre) is a pair <a,# % consisting of an
object @ € A and an arrow #2:Taa —>a of A such that
Mema=dd, and WT(h) = h.wq - A morphism £:<a,h)—
—><a!, M"Y of T -algebras in an arrow £: a —>a' of A
with £h = a'.T(£) .

Let A’ be the category of all T -algebras and their
morphisms. Categories isomorphic to some A' are called mo-

nadic. The assignments

(@) —————> o a > <Ta,u,?
[ £ £ P4 |f T¢
(@R & & ——— - (Ta, 0,



give the functors GT: .AT—--> A, P A_—»AT and PV
is a left adjoint for @7 ., Further, T is the monad defi-

ned by this adjunction, i.e. T = ¢TrT .

By the dualization we obtain comonads, coalgebras over

a comonad and comonadic categories,

Let X : M—>A have a right Ken extension Ry, e a-
long itself; @: Nat (S,Ry) ¥ Nat (SK,X) . Then
SRy, s @ is a monad in A | where ng"f(Id—K) s

ow = 9'4(5'Re) (see [141, p.246 ex.3 or [12] for the poin-
wise case). This monad is called the codensity monad of X .
If K has a left adjoint F: A—>M , then the codensity
monad exists and is equal to the monad defined by the adjunc-

tion. The assignment

m — > {Km, €, 7
m'y = KN, € )

_ R
gives the functor X : M—> A o, Namely, {Xm, g,,> is an

'RK ~algebra for each m e M for gc‘q,xnﬁ.g-"(g.xxg)xg-

~gg'e . R e)=c-Rye and e.nK=c. g (ld)=

= ¢ <_p'4(Id,K) =Idy . Here the definition of the natural bi-
jection @ by means of g is used. Further, Kf is a mor-

phism of R, -algebras for the naturality of e:RK—>X .
R
Clearly K = G KK .

Besides algebras over a monad we shall need algebras
arising from a functor Y: X—»> A (see Linton [121). Let
- 705 -



£ . S
V”-A(m,V—) formeA and ViV'—=>V" be the
natural transformation induced by £: ¢ —>m .Let 2™ =

= A(m,a) for a,me A, af:A(f,a,) : a™—» o' for £:

iR —>m in A and ¢"= A(m,g): " —» & for g:a—»b
in A. A YV -algebra is then defined to be a system (a, <€)
consisting of an object aa€ A and a family

U=1 ‘a’u,b/"‘”"' eAtof functions

=
A, o Nat (V7 V) — Ens(a™, o)
satisfying the identities
(V- for £:4
o, % = Q or H —__m
S [ )
O (00 =t (O (B)for 0:V s ¥, 6"y s v ™

As YV -algebra homomorphisms from (a,L) to (&,&8) we ad-

mit all arrows g@:a—> & of A making the diagram

e
a® ¥ > "
%, 0,8 G g €6
o
a® y = p

comnute for each natural operation € Nat (Y"", V“) . We
write 'V'-Abg— for the resulting category of Y -algebras.
The assignment @, X =(Vx, a*y , where ‘UL:,’,.’(O) = Oy

for Q: V'"..:-.;V“ , gives a functor Qy: X—>V-Alg(§, (€)=
= V€) . Further, the assignment
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(@, ) -

a
4

(¥,8) + >

defines the underlying A -object functor “V :V-AMg —> A,
Clearly V = Il, §, -

If a functor Vs X—> A admits a codensity monad Ry,
then there exists an 1somorphlsm d: ARV—-> V-Ag uth the

inverse ¥:V-Agg —> A Rv such that the following
diagram commutes (see [12], Th.9.3).
AY
v A
X A ¥l
Iy
& Y

Hence for any monad T in A the category AT is isomorphic
with the category G'-Alg of @' -algebras. In the case
A =Emo categories V-Afyg. for set valued functors V:

: X—>Enn are precisely equational categories and categories
EmnT are varietal categories in the sense of Linton [11].
Varietal categories are equational categories for which the
underlying Ems -object functor has a left adjoint. Catego-

ries dual to equational categories were characterized in [3]
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under the name of quasi-cotripleable categories. The example
of an equational category which is not varietal is the cate-
gory of complete Boolean algebras (see [11]) or the category
of complete Boolean algebras with the closure operation (see
[8])s If T is a monad in Ems and we want to determine the
operations of the @' -algebra $<a,h? = (a,e) for<a, he

e EmsT we may confine ourselves to natural transforma-

b
tions 6: (@)™ =5 @7 because any s € Emp» is a copro-
duct in Ems of one-element sets. Then ‘unm (6)=%e, ,

)”lr

where 6': (Id'Em -~ T is a unique natural transforma-

C s . . T
tion from the definition of a right Kan extension e: TG —»

~+GT (it follows from [12),Th.9.3, compare with [15),p.
111).

Let Z be a full subcategory of some equational catego-
ry V-Alg . We define rank Z to be the least cardinal number
X with the property: If Ca,et), (&, L)€ Z and £: a—&

in Ems such that the diagram
~n

£
i - o™
U, 00 l l:{rm’,‘ce)
v
£
a‘“ ,Qr"'

*
commutes for each 8:V —»V , cerndm < x , thenf is

a VY -homomorphism. Any varietal category with a rank is a

full subcategory of some <A C4) .
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§ 2. F-strong and F -nice embeddings.

At first, we give another way in which nice embeddings
can be introduced. Let F: A—>»B be a functor and (N, W)
a category structured over B . Let N be a category with
objects (a,m) , where o €« A, m ¢ N,¥m = Fa and arrows
£:(a,m) —> (&, m’) are those arrows £: a —>a' for
which F£ = W£' for some £': m —» m' . Define Wg:Ng —>

—>A by We(a,m)=a, W (£) = £, Clearly (N.,W.)

is structured over A (these categories were introduced in a
special case in [9], 1.1). Now, let (M, U) be structured
over A .It can be easy to see that F -nice embeddings M —»
—> N are precisely realizations .M.—-».NF . Namely, if X :

: M—> XN is P -nice, then m s (Um ,Hm) defines a re-
alization M—> N and conversely, if 6m = (a,m) for a
realization G:M—>Np , then mi—»m defines an F -nice

embedding M—N .

Theorem 1. Let (M ,U) be structured over A and F:

;: A—»B a functor. Let there exist an F -strong ( F -nice)
embedding H into a category V-Alg for some V: X—3B .
Then &g, : M—>FU-Alg, is an F -strong ( F -nice) en-
beddiné. '

If B=Ems and H is F -strong, then rank Py M <
& rank HM .

Proof. Since llgy gy =FU = lIyH , the functor

gy is faithful. Let Hm = (Fum ,%™) for me N . Let

3
m,,heB,e:Vm—'—)V . The diagram
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w (PUS)”

(FUm) > (FUm”)™
m\
&, o) %, oC6)
o
( FUm)b——(P;uf)——-b (f‘l.[m’)h

commutes for any m ,m' e M , £:m —»m’ in M . Hence

» m
Gm = M‘(e) determines a natural transformation 6*:

(P s (FW™ . It is §m = (FUm, &™) , where
m . 2 .

‘(/L”,,. (y) = v,  for any w: (FUY > (FU) , i.e.

'a:,‘ce*). er = ::*‘(6) . Let m,m'e M, m +m’.

Since Hm # Hm’ | there exist m,% ¢B, 8:V —> V with

3' (9) s 3’ A(O) . Hence um*ce )+ “(8*)

and therefore Qmmv + Qrurm’ . We have proved that

Qm is an embedding and “Fu QFLL =FU .

Let m,m'eM, %:dy,m —> d; m’ inFU-Ag (Il (h)=

= F(h,) for some h,: Um —>»Um’ in A in the case of an
T -nice embedding). Let n,kcB and 8: Y= ¥™ . 1t

» ,m
holds )\.-Iﬁ'm’u(a)-h “(6’)- (O N &m’*(e)-h

and fherefore MiHm —»Hm' is a Y-homomorphism. Hence
there exists H':m —»m’ in M with X&'= & .Clearly
y
Suppose B =Ens, H F -strong and x = xank M .Let m,,
meMh, 2:PUm—FUm'in Ems such that the diagrem
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(FUmS" > (FUm)"™
AR o o (¥
N

A

Fum®e 2 Fum™

m Qe
commutes for each m,f% € Emb, candl m< i,y :(FUL) —> (FUL)™.

,

R m
Hence M -a&n,uce) = :&:’uce).h”” for each m, % «

€ Eny, cand m<n,8: Vs v, By the definition of a rank
one gets that M :Hm —» Hm' is a V -homomorphism. There-

fore h = Hh’ for some h’: m —»m’ in M and A =
=Qm(9|.’):§mm—>§mm' is an arrow in FU-Afg . Hence

rank an S x .

Corollary 1. Let (M,U) be structured over A,F:A—
—> 3B and PU admit a codensity monad Ry, . Let there

exist an F -strong ( P -nice) embédding H into a category
— R

V-Atyg for some V: X—> B . Then PU:II-—»B"" is an

F -strong ( F -nice) embedding.

If RB=Ens» and §{ is T -strong, then rank FUM <
€ rank HM .

This corollary follows from Theorem 1 and from the abo-
ve guoted Theorem 9.3 of [12]. We shall give an independent
proof for the case Y-Alg = BT , where T is a monad in B.
Let Hm = <Flm,h,) for meM . Since X1 d—s> BT is a

functor, M, : TFU —_ FU is a natural transformation.
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Hence there exists & unique natural transformation 6: T >

=+ Rgy with o= ¢ 6FU . Let £: Fim FUm’ be an

R
arrow in B ', Consider the following diagrem
£ ,
FUm = FlUUm
A A
€m Sm?
R..f
FU ’
R, FUm Re, FlULm'
\ A
Seum et
TFUm—% > TFUm'

Since £: <FUm, ¢, —> {FUm’ ¢,,,? is a homomorphism and
¢: T = Rru . both squares of this diagram commute.
Hence £: Hm —>»Hm® is a homomorphism. This fact is suffi-
cient for the proof.

The assertion about a rank does not hold for F =-nice
embeddings as follows from Theorem 2. Further, this machine-
ry does not work for full embeddings as we can see from the
exauple of the category of ordered sets which 'is fully em-
beddable into a category of algebras <Y (A) (by [ 7] becau-
se a two-element chain forms a dense, i.e. left adequate in
the sense of Isbell, subcategory) and Id gme is a coden-
sity monad of its forgetful functor. In the case A= B=Ems
and P = Idg,, we obtain a necessary and sufficient condi-
tion for realizability of a concrete category (M,U) into

an equational category. Moreover, the image of M in this
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realization has the smallest possible rank. Hence no equa-
tional category can be realized in an equational category

with a smaller rank.

Corollary 2. Let F:Emp —> Ems be a functor. A small
concrete category (M,U) which is P -strongly (F -nicely)
embeddable into an equational category is F -strongly (F -
nicely) embeddable into some e(4) .

Proof. By Corollary 1 FU: M—s EMRF“ is an F -
strong ( F -nice) embedding. Let x=mupfcand Um /me M 3.
By {151, p.112 rank FUM < » . Hence FUM is realizable
into a category of algebras endowed with a set of at most s~
ary operations.

Let M have the only one object m . Then C =M (m,m) is
a semigroup of transformations of a set X = Um . We can com-

pute the codensity monad Ru. and we obtain that R, =

u
= Lim (s b 1) Lo Mo Emn) =l o € TT 5 /0 () = g
X

for any S eC3 . Further g: X —» X 1is a homomorphism of
an R.u -algebra <{x,¢€,,? if and only if 9""2‘4’() - Yy -

We have obtained a characterization of semigroups C of
transformations of a set x which are endomorphism semi-
groups of a V -algebra as semigroups C containing "d'x

with the property:

$X—>X (., )= for each (n..) e TT_ x with
L4 1 ¥ Wia = Yy Veeext © cen®

hiy)=y,, forany heC==g6eC .
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It was proved in [4] that a semigroup C ¢ x* containing
d x is an endomorphism semigroup of an algebra with infi-
nitary operations if and only if Z(Z(L,)) =L, , whereZ
denotes the centralizer and L, is the family of all left
translations of x* induced by elements of C . Of course,
both characterizations are equivalent.

Let F,G: A—>A be functors. Define a category
(ACP,6),1u) structured over A as follows (see [20] for
A=Ems ). The objects are couples (a,x) , whereacAh
and x :Fa —» Ga is an arrow in A . The arrows £: (a,x)—>
—>(a),x’) are arrows f: a—>a’ of A such that G(£)x=
= K'F(£) . Further, Ua,n)= a and Uf = £, If T is a monad
in A, the category AT is a full subcategory of A(T, IdA) .

Theorem 2. Let <T,m, > be a monad in A . Then AT
is T -nicely embeddable into A(Id.A, Id.

Proof. The assignment

{a , h)F————> (Ta,n )

£ Tf

(&, > (Ta'y . 0)
defines a functor H:A' —p A(Id,,Id,) and TG = UH
holds. Let £,q.:<a,sr> —> <a’,4’) be T -homomorphisms and
T€ = Tg . Since .m, = id, by the definition of a T -al-
gebra, it holds £=fh.q, = W T(E)n, = W' T(Q)n, =ghn, =g
and thus H is faithful. Let £: a—»> @’ be an arrow in A

and T£: H{a ,h >—> H<a', ') an arrow in
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A(Id,,Id,) . Ve have AW'T(£)=(h'n, )W TE)= h'iq, T =
-h’(T(f)qah) =Jh’('n‘. £h) = £4 and thus £ is a T -ho-
momorphism. We have proved that H is a T -nice embedding.

For A= Ems this result follows from [19], Prop.3.1l,
too. By this theorem any varietal category is nicely embed-

dable into the category of algebras with one unary operation.

Lemmg 1. Let A have countable copowers. Then
A(Id,,Id,) is monadic.

Proof.We are going to show that the forgetful functor
U:ACId ,Id)—> A has a left adjoint P. Let a € A . De-
fine Fa = (UPa,x,), where UF, is the coproduct of coun-

table many copies of a with injections L:: o = a —>UFa

for % = 1,2,... and x,:UPFa — UFa is a unique ar-

-3

row in A such that 4, = x il for any S =4,2,.. .

+4 a S

If £:a—> & ia an arrow in A, then UPf is a unique

arrow such that L{f—ﬂ]"(f)&: for any S = 4,2,... . The

following computation proves UF£f to be an arrow in

@ , & , & Y 4
A(Id,Idv);uF(f)t ,‘1"-0“- uP(f)cﬁ*ls‘h‘_‘ fm )Lb, . 4!‘ £ m

w1, UF#). 4y for sny S and thus UF(£)n, = xg UP(E) .

Further, the equality m, = 4'..: defines a natural transfor-
mation m : Idy—<+ UF ., For any X =(Ux,q9) € A (Id,Id)

there exists a unique arrow Ue,: UFUx —»Ux such that

&"Lus“.i.:.“(gfguu“, 91:9,, 9?‘ = ¢9 , and so on) for

any R = 4, 2, P TI
Moreover, ¢, :(UFUx,x, ) —> (Ux,q) is an arrow in
- 715 -



L Ux L Ux [ -1
ACId, Id) because Ue,x.wux.yh=ll‘.ex.4,h”=g, =9.¢ =
=g .Ue, .4’«:': for any fe . We compute that
s‘pu';*ld'um,xd,) is a natural transformation. Namely,

for any arrow £:(Ux,q¢)—> (Uy,6 %) in A(Id, Id)

; , Ux fo-1 N1 Uy
it holds U.i‘.llex.o‘i =Uf.g =% .IUf BUsy_.o”.Hfs

, U :
-Ue@.UFIM‘.o‘: R Since Ueu.qw-Uex.L:” =

=¢ =dd,  for any xeA(Id,Id), Ue.qU: U —=» U

is the idertity natural transformation. Let a e A . It holds
Ueg, UFn,.igmUey UPLT . dgm Ue iy s ifm o i = 4
and therefore €F .Fn:F—=»TF is the identity natural
transformation, too. We have proved that P is a left ad-
joint for U with the unit 4 and counit e .

By the Beck’s precise tripleability theorem it remains
to establish that U creates split coequalizers. But U
creates all coequalizers. Namely, let £,q.:(a,n)—> @,n’)
be two arrows in A(Id, Id) and e:a'—> a” a coe-
qualizer of Uf, Ug in A . There exists a unique x”:a"—
—>a” in A such that x”.e=e.x'. It is routine to pro-
ve that e:(a’,x’)—> (a”,x”) is a coequalizer of £ and ¢

in ACId,Id) .

Corollary 3, Let A have countable copowers. Then any

category comonadic over A can be nicely embedded into a

category monadic over A .
The proof follows from the dual of Theorem 2 and from
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Lemma 1.

The second part of this paper will appear in this jour-

nal later.
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