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Commentstiones Mathematicae Universitatis Carolinae 

14,4 (1973) 

SOME HIGHER ORDER OPERATIONS WITH CONNECTIONS 

(Preliminary communication) 

Ivan KOL̂ ft, Brno 

Abstract: Some relations between the higher order 
connections on a Lie groupoid and the first order connec
tions on the higher order prolongations of this groupoid 
are studied. 

Key words: Connection, jet, Lie groupoid, absolute 
differentiation. 

AMS, Primary: 53C05 Ref. &. 3.933.13 

We present an abstract of the main results of a paper 

under the same title which will be published in Czechoslo

vak Mathematical Journal. 

1. Let $ be a Lie groupoid over B » The partial 

composition law in § as well as the prolongations of this 

law will be denoted by a dot. If $ is a groupoid of 

operators on a fibred manifold (£,*ft>,B) , then the K -th 

non-holonomic prolongation $ ^ of $ is a groupoid of 

operators on the K -th non-holonomic prolongation 3*£ 

of £ , Hi!. In the semi-holonomic case, the same holds for 

$ * and ;f*E . Let Z*C§) or (J^Cf) be the fib

red manifold of all non-holonomic or semi-holonomic elements 
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of connection of order H, on $ respectively. If C : 

• B —* A (j) is a first order connection, then its 

HJ -th prolongation in the sense of Ehresmann is a cross 

section C'** ; B — * 5**'<$) , I 21 . As usual, 

TT^CB) or ff^CB) will mean the groupoid of all inver-

tible non-holonomic or semi-holonomic /t-jets of 3 into 

B . Further, /̂J will denote the canonical projection 

of )V -jets onto /to -jets, A> << K • 

2. Let DC € S ^ C f ) , X ~ i^ i> and let Y e 

€ a^CTT^CB)) , Y « ^ A . We define a mapping ee^+i : 

: & * + \ $ ) S ft<cff*CB))-*ft'c$*) by n,K^4 <X,T) -

« ^ Co> C<yJA (<£.)• ^>"^(x)) , provided H denotes the 

fibre product over B * 

Proposition 1 • The mapping ^^^A.A > &K, + A ^ : 

: <T+'<:§)H tt'of*CB»-* Q4($*) 0 <TC$), r * ^ , , £ * ^ ) o y r ; . 

=B C^e^^^ CX,1T)^ ̂v̂ .̂̂  -X ) is a B -isomorphism. 

In the special case $ « IT CB) , we introduce a map

ping 

ft : ft^CTT^CB)) > ft'CTT^CB)) by the following 

induction: 

a) ^ is the identity of fl^CTT^CB)) , 

b) f » a ) - ^ a , f ^ C ^ 3 C W , JCcS^CTT^CB)) . 

Proposition 2« The mapping p^ is a B -isomorphism. 
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If a connection C ; B — > Q C$ ) and a linear connec

tion on the base manifold L : B —=* Q^dT^CB)) are given, 

then we define the prolongation >p,CC,D of C with res

pect to L by jfi(C,L)=? ^ C C ^ L ) ; B — * Q.4 ($4) , 

where C' « CC1) , The *, -th prolongation fifCC,!,) of C 

with respect to L is defined by the iteration f?(C9L)am 

xx ^C^" CC,L), L ) , jp,°(C,D - C . This is a cross 

section of Q^Ccp*) . The relation of ^ C C , L ) to the 

prolongations of C and L in the sense of Ehresmann is 

described by 

Proposition 3« The connections C : B—*<* v$;, L s 

rB-^Q^CTT^CB)) and * * C C f L ) i B — * flfcf*) satisfy 

3* We shall give a comparison of the absolute diffe

rentiation with respect to the connections of Proposition 3. 

According to C2j, every X e & C$ ) determines a mapping 

X~*: 3 ^ E — • J * C B , E A ) , 1 T ^ X~*.Vr , which is said to 

be the absolute differential with respect to X • Since 

$ * is a groupoid of operators on D*JE 9 the absolute 

differential with respect to an element Z c Q ($ ) is 

a mapping Z~': j J ^ E — * J* (B, 3>*E ) . Let Zi c 

e ®#^$ ) De tne element of connection derived from Z 

by means of the functor £.*" 5 $ * — * • $*~ . 3toe map-
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ping Z~ ; J y E—*• J^ CB, D^~ E ) i s extended to a 

mapping Z ^ : J* CB, 5 * E ) - * J^ CB, CJJCB, ^ ^ E ) ) , 

Then 

(1) Z^ . Z\ 3 f ^E-^^CB. jJcB,3f-^W . 

Define by induction .M^CB,E^) » ̂ CS,EX), Jf̂  CB, E^) m 

» ^CB^Jt^CBjE^)) . By iterating (1), we obtain a mapping 

tear')* 3 ^ £ ^ K * * ' C B , E * ) , which will be 

called the fu l l absolute differential with respect to Z . 

Analogously to the concept of a semi-holonomic j e t , we de

fine a subspace £*CB,E*) c )t£ (B,ZX) by the f o l l o 

wing induction: 

a) S<CB,Ej<)« q J C B . V » 

b) an element ^0 c H^ CB^E^ ) belongs to 

S^CB,E^) if tf is a local mapping of B into 

S*~ <B,EA) satisfying 6-(x) * $£ £(l&(y,)l . 

Proposition 4. If Z c fl£ (f *) and W e J J ^ E , 

then tCZ-^(HT) € $Z+4(B,VX) . 

In particular, let C : B—*• fl'cj*) be a con

nection on ^** and let <TsB—>E be a cross section. 

Then the cross section 

764 -



will be said to be the full absolute differential of €f 

with respect to £" . 

On the other hand, every Ye fi^CTT^CB)), H T * ^ * , 

determines a mapping <cc,CY); 0^ CBjE^)—* J^CB, J^ (BjE^)), 

^ 9 ( * ) h > £* C<J>C<SJ,) A GJJ,)) . Consider the element 

X| € fl^CTT CB)) derived from Y by means of the func-

tor ^ . ' T T ^ C B ) — ^ T T ^ C B ) . The mapping (aCD^) is 

extended to a mapping ^(Xf)^ '• J ^ C B , ^ CBjE,,)) —*• 

and one can construct c^C}^)^ o (btY)i 3X CB, E x) > 

^ 3XCB,DXCB,D^ (B,^))) . By iteration, we obtain a 

mapping * CY) : 3^+'CB, E* ) - - * X ^ C B ^ ) . In parti

cular, if ycOicTPCB)) and V e 3 ^ ( B , E x ) , then 

<*Cy)CTn e S ^ C B j E . ) . 

Proposition 5» In the situation of Proposition 3, 

tC C^CC,D C * ) ! " 4 1 ) is the composition of C C ^ V * ) ] ^ 

and v(.fKClJg'~4}Cx))) , x e B , 

The groupoid $ ?< TT^CB) operates on S ' ^ C E ) in 

a natural way. This action can be used for a simple step by 
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step construction of the full absolute differential of a 

cross section C;£ —> £ with respect to ^!C<C9L) by 

means of C and L only. 

Proposition 6. The full absolute differential of 0 

with respect to jft^CC^L) coincides with the absolute dif

ferential with respect to the connection C x L on 

$ xTT (B) of the full absolute differential of 6 with 

respect to 41 ~ CC,L) . 

Proposition 6 gives an interesting consequence for the 

special case of connections on vector bundles. In the vec

tor bundle case, our prolongation of a connection with res

pect to a linear connection on the base manifold coincides 

with the operation treated by Pohl, L3] • 
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