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Every mathematician working in module theory and in the
torsion theories, in particular, feels that a lot of talking
about torsion theories can be extended to preradicals, in ge-
neral. On the other hand, no backgrouné for the theory of pre-
radicals (except for scattered quotations) has ever been pro-
vided, as far as we know. Hence our aim is to bring such a
background, ready for further use. The authors have been in-
vesatigating the properties of preradicals more deeply and some
of their results have already been submitted for publication
({13,021,03]). The theory of preradicals appears to be the
real know-how in the theory of modules and rings. In particu-

lar, it seems to be an ideal tool for dualization problems.
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Now, let us introduce a few definitions. .

All rings will be associative and with identity and
will be denoted by R .A preradical # for R-mod (the
category of unitary left R -modules) is any subfunctor of
the identity functor. If n is a preradical then 'f,‘, =
={M;xM)=M? and F, = {M; # (M) =03 . The modules
from Ty (Fr)  are called s -torsion ( x-torsionfree)
modules . If x (M)e T,y (M/n(M)eF, ), for all MeR -
motl , then we shall say that x is idempotent ( x is a
radical). Further, the symboles _Ii,L and .M‘I) are used
for the direct sum and the symbol TIT for the direct
product of modules. If x, 4 are preradicals then » € A
if A (M) e »(M) for every module M . A class of mo-
dules is called hereditary (cohereditary) if it is closed
under submodules and isomorphic images (under epimorphic
images).

If a prospective reader will find some of the proofs

too short, it is due to the fact that obvious parts are om-
itted.

Proposition 1. Let 2 be a preradical, M &€ R-mod and
NelM be a submodule. Then:

1) alN)sNarM) .

(1) M)+ NI/ Nsa(W/N) .
(iii) If w (M/N)=0 then n(M)e XN .
(iv) I 2 (N)= N then N s a(N) .

Proposition 2. Let s be a preradical and ‘M-l’ 42el,
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be a family of modules. Then 2 (',“L‘L
.) € ) . .
%G T Ma) & TT v (M)

M}‘_) =,.LLI FA C,M,L) and

I 1€

Proposition 3. Let . be a preradical. Then:

(1) T, 1is a cohereditary class closed under arbitrary

direct sums.

(ii) F, is a hereditary class closed under arbitrary di-

rect products.

(iii) HmR (T,F)= 0 for all TeT, and FeF, .
(iv) T, nF, =0

(v) If M3 ,4 €I is a family of submodules of a module

M such that M; € T, , forall 1 e, then’LEa}IM;cT& .
(vi) If My , ¥+ € I , is a family of submodules of a module
M such thet M/ M; € F, , for all + €I , then

M/EQIM’L € Pn .

Proposition 4. Let x be a preradical and M e R~mod .,
Then:

(1) % (M) is a characteristic submodule of M .
(ii) If M € R-mod-R then (M) g X~mod-X .
(iii) If M is free then X (M) € R-mod-R .
(iv) 2 (R) is a twosided ideal.

(v) A(R). Mes (M) .
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(vi) I£ M is projective then x(M)= nC(R). M .

Proof. (ii) The right R -multiplication on M is a
left R -endomorphism of M .
(v) Let m € M be arbitrary. The mapping £: R—> M , gi-

ven by @ > am , is a homomorphism, and consequently

ACR)em = €CRC(R)) &€ (M) .

(vi) There is a free module F such that F=M ® N. We

R for some index set I . Then

can suppose that F = R

(P2 xR 2 (e RN (v (R).R)P2 o (R).RD

by Proposition 2. Further, X (M)@®@ a2 (N) = o (F) =

2= a(R).Fan(R). M@ N)=a(R). M@ (R).N .

However, x (R) . M€ n (M), x(R). N € x (N) , and there-
fore x(R). M = (M) .

Proposition 5. Let x be a preradical, and for every
MeR-mod let X(M)= SN, where N runs through all
the x -torsion submodules of M . Then:

(i) X is an idempotent preradical, ¥ ¢ » and T, =Ty .

(ii) If » 1is an idempotent preradical and » & n , then

A S X . Hence X is the largest idempotent preradical

contained in x .
Proof. (i) is obvious from Proposition 3.

(ii) since » s x, T, = T, , and hence »(M)e Ty , for

all MeR-mod . Thus A(M) s (M) .
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Proposition 6. Let x be a preradical, and for every
MeR-mod let X(M)= NN, where N runs through
all the submodules N & M  with M/N & F, . Then:

(1) ¥ is a radical, x g X and F, =Fg .

(ii) If » is a radical and % & 4 , then ¥ = 4 , Hence ¥
is the least radical containing x .

Proof. The proof is similar to that of Proposition 5.

Proposition 7. Let n be a preradical. Then the follo-

wing are equivalent:

(i) If MeR-mod and Ne M is a submodule such that
xM) s N(Ns n (M), then n(N)=n (M) (xN/N)=xW)/N).

(ii) x is idempotent (x is a radical).

dii) x = R C=X) .

Definition. Let x be a preradical. The preradical X

(X ) is called the idempotent core (the radical closure) of x

Proposition 8. Let n be an idempotent preradical. Then:
(i) FPeF, iff HmR(T,F)- 0 for a1l Te T, .
(ii) P, is closed under extensions.

Proof. (i) According to Proposition 3 we have only to
prove the sufficiency. But if Homg (T, T)= 0 , for each
TeT, ,then n (F)=0 since #(F)eT, .

(ii) is an easy ccnsequence of (i),
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Proposition 9. Let #~ be a radical. Then:
(i) Te T, iff Homp (T,F)=0 for all FeF, .
(ii) T, is closed under extensions.

Proof. The proof is similar to that of the preceding

proposition.

Theorem 10. Let » be a preradical. Then the following

are equivalent:
(i) » is an idempotent radical.

(ii) For each M & R~ mod there exists a uniquely determi-
ned (up to an isomorphism) exact sequence 0—T—>M—>F-0

with T e T, and ‘Fan .

\iii) For each M € R-mod there is an exact sequence

0—+T—+M—>F—>0 with Te T, and FeF, .

(iv) 4 is idempotent and T, = Tg .

(v) x is idempotent an@ T, is closed under extensions.
(vi) T, = Fg and T, is closed under extensions.
(vii) F, = Fx and T, =Ty .

(viii) T, = Ty and T, is closed under extensions.

(ix) » 1is a radical and F, = Py .

(x) & is a radical and T, is closed under extensions.
(xi) * = X = ’)z . "

Proof. (i) m==> (ii). Obviously 0— & (M)— (M)=>M/ 2 (M)~ 0

is the desired sequence.

- 80 -



(ii) ==> (iii) and (xi) =) (i) trivially,
(iii) == (xi). Let M € R-mod and 0-+T—£b)d—-' F— 0

be an exact sequence with Te T, eand Fe¢ F, . Then

£(T) e Ty and M/£(T) e F, , and therefore we can
write £(T)EX (M) s n (M) s R (M) £(T) .

(i) => (iv) is obvious, (iv) == (v) by Proposition 9 and

(v) ===% (vi) by Proposition 5.
(vi) ==y (vii). T, = Tp seince x = £ ., Let M e Ty

and B MAXCM) = N7 (M) Then XeT, = Tg sin-
ce T,p is closed under extensions, and consequently N =
=X (M), Hence N/Z(M)eFy =F, =Fzp , and so
RMy=Ms X (M) . Thus M=X(M)eT, .

(vii) ==) (viii) by Proposition 8.

(viii) == (xi). et M e R-mod . In the exact sequence

0= TM) /TR —> N/ RE(RINN—> N/ZM)— 0

the first and the third module belong to Fy = F, (since ¥
is a radical), and therefore M/H(Z(M)) e Fy = Fg . So
R(M) = R(X(M)) , that is, E(M)e Ty = T, ,and hence
MM sxM) s x(M)sEMN) .

The other implications are either trivial or follow immedia-

tely from Propositions 8, 9.

Corollary 11. Let x be a preradical. Then:
(i) If T, (F,) is closed under extensions, then X (%)
is an idempotent radical.

(ii) % end X are idempotent radicals.
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i) Tef s s X .
iv) If % is idempotent (if x is a radical), then % =

: % =% (=X =% ) is an idempotent radical.

.v) If both T, and F, are closed under extensions, then

~
=

E=srxsZ=%.

(vi) If ¥ = ¥  and both T, and Ty are closed under

extensions, then » is an idempotent radical.

Proof. (1) By Theorem 10(v) ((x)).
(ii) By (i) and by Propositions 8, 9.
(iii) The only non-trivial inclusion is % & X . However
xS % implies ¥ @ A and, since X isa radicel,
Proposition 6 yields EesX .
(iv) Since x is idempotent, we have % S R=% s R by
Proposition 7.
Similarly, if x is a radical.

(v) is obvious. .

Example 12, Let X = Z (the ring of integers), n be
a prime and & be & preradical defined by x(G)=f.6n GLAI.
Then, as one may check easily, X(H)=0 and % (H)=H, H
being the Prifer 4 -group. Hence ‘)Af +* % .
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