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Commentationes Mathematicae Universitatis Carolinae 

15,2 (1974) 

"DISORDER" IN LATTICES OF BINUMERATIONS 

c) C.F. KENT , Thunder Bay 

Abstract: The main result of this paper relates to re
sult s"~o.FHarjkovd and Paltich, regarding the ordering of con
sistency statements. We show that many of the same order 
properties are possessed by binumerations themselves, and 
by proof predicates. A result on independent sets of senten
ces in the Lindenbaum Sentence Algebra follows. 

Key words: Arithmetization, binumeration, consistency, 
lattice, provability. 

AMS: 02G99 Ref. 2.: 2.669 

Introduction. The technique of arithmetization of a 

theory T, which is central to many of the results of proof 

theory, depends for its success in any instance on the par

ticular representations one chooses for the metamathematical 

functions and predicates. For Godel's original representa

tion of the proof predicate the "second incompleteness theo

rem" can be established for first order number theory, P . 

For Rosser's representation, extensionally identical, it 

cannot. Feferman [F 603 has established that for the set of 

results related to the second incompleteness theorem, the 

crutial decision is taken when membership in the set of 

x) Research sponsored, in part, by grant from the National 
Research Council of Canada. 
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axioms is represented, fhe Godel results are obtained when 

the logical complexity of the axiom description is not too 

great. Terminology in this paper agrees generally with that 

in D1 601 and CB 71.3. 

Feferman found that even among the "intensionally cor

rect" representations of the axiom set; those for which 

the Godel second theorem holds, there are still major dif

ferences which can be recognized by the theory. We use Fe

ferman #s termf binumeration. for a formula of T with one 

free variable, AD , for which it holds that: 

If iU is (the Godel number of) an axiom of T , then 

h TAO
c^ > . 

If m, is not (the Godel number of) an axiom of T , then 

|-T-A0
C*° . 

We consider theories T » <A,L> where L is a first-or

der language and A is a fixed set of axioms binumerated 

by a formula obtained when a primitive recursive (p.r.) 

characteristic function is equated to 0 , as ecu » 0 . We are 

interested only in theories strong enough to represent p.r. 

functions and in intensional binumerations. 

M/jkova' CH 711 studies the set of p.r. binumerations 

for first order arithmetic, P , preordered by the relation 

cc d 3 J> <-=> |- C0J^~* COtf̂  (P03) 

where CuM^ denotes the formula of f which naturally ex

presses consistency of ? relative to the binumeration. 

Among other things, she shows that the equivalence classes 

of binumerations for the fixed axiom set A under the asso-
A ciated partial order form a lattice, 3<bn, } and that the 
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countable, atomless Boolean Algebra; hence any countable 

partially ordered set (poset) can be ordered isomorphical-

ly injected into "B<m^^ * This last result might be inter

preted to mean that restricting to p.r* binumerations, al

though adequate to secure the proof of Godel'a theorem, 

leaves an unfortunate disorder among representations of 

the axiom set .A , even in the case of recognizing the equi

valence of the consistency problem within the theory. One 

can then ask whether the situation would change if one 

found conditions to restrict binumerations so that the equi

valence of consistency could be established for all binume

rations. Two other preorders of the binumerations spring to 

mind: 

(PO,j) oc 3 /S<a=BB> |- ecx =r 0—> p x » Q . 

As in CF 603 and tH 713 , we assume that such formulas 

as appear behind the turnstile in (PO^) - (PO^) lie in a 

particular p.r. extension of 7 , which we denote by P+* ,but 

omit the dot used in [F 603. Since we often have to use ca

re in stating where formulas, and proofs, lie, we will use 
P+ 

the notation CE3 of [F 603 for the result of applying the 

standard p.r. procedure for eliminating p.r. definitions 

from the formula E , of ? + , to get a formula of P . Upper 

corners, as in rlf denote the numeral for the Godel number 
P+ 4-

of [El , when E is a sentence of 7T -

Several of our results depend upon an appplication of 

a form of the recursion theorem for primitive recursive 
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functions, and upon its assertion being provable in 3?**,, as 

in Iheorem 5.1 of If 601 or, more appropriately, 2.12 of 

[F 621. Since the recursion theorem is a statement regard* 

in.g indices for functions, we must have available a p.r. in

dexing for the p.r. functions. We thus include in P + , a 

symbol im,l composed of braces and a natural number, to 

name the function, «• ,of that index, m. -This is the only 

proper name for c*> in ?* ,but we persist in writing cc when 

there is no harm. This usage is at variance with If 62} whe

re {<n>} is strictly a metamathamatical object, but the same 

theorem as 2.12 holds in our '?+ and we cite it when requi

red. In fact, the proof of Feferman's 2.12 for P4* is a li

teral translation of the proof of the informal theorem in 

CK1 583. 

The p.r. binumerations under d/j clearly form a lat

tice under the obvious p.r. definitions of v and A , which 

give 

(ot> A /3)# s 0<s-=> ocx + {3iX »- 0 

Coc v (i )*•» 0 <=*> fox) • C|3x> * 0 . 

As remarked above, H6jkov£ has shown that the structure un

der 3 3 is also a lattice. But we restrict the use of the 

symbols A and v to the above meaning throughout the pap

er when they are applied to binumeration riairs. The same*^ 

can be shown for 3 A -*S follows. Given two p^r* binumera

tions tc , [h defined £^ -equivalent p.r. binumerations 

*'.y, 

**) I.e. that the binumerations form a lattice under ^« • 
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ь'*.J 
4 otherwise 

where: CtC***^) (is the formula of P+ which) "says" that 

# is (the Godel number for), some universal closure of the 

formula (whose Godel number is) *^
3
 , and £*fM l*,^) (is the 

formula of P4" which) says that x is a (Godel number for a) 

proof of (the formula whose ffodel number is) ty , from axiom 

binumeration o£ . 

3toveCCq,) is Sxtfef* fc,^) «" Clearly, ec and ec' 

binumerate the same axiom set and the equivalence of their 

theorem sets can be proved in P4" , establishing 00 ̂ a oc' 

and t*/ -*2 oc « The same is done for /3,/3' . It is then easily 

shown that the -mf of oc, fi in the 32 order is OC/A #', 

while the *ufi, is ot/v /3', as in CH 711, theorems 2.19 and 

2.21. 

In Section I we shall give a new proof that any count

able poset P , can be injected into the asL lattice, and pro

ve also that P can be injected into the r*2 order of each 

^3 equivalence class, and again, into the =£4 -order of 

many of the -£,-, equivalence classes*. (Chess injections are 

carried out under an.additional condition on the images which 

allows yet another proof of a theorem recently published in 

[M 721, and earlier in tK 62]. Our results may be taken to 

indicate there is little point in seeking conditions on p.r« 

binjjjaerations solely to ensure the inter deducibility of 
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of" consistency statements , or even provability, since 

the same "disorder* will manifest itself at a more fundamen

tal level. We are indebted to M. Hâ kova* for several helpful 

comments and criticisms of the present work and particularly 

for greatly simplifying the original proof of Lemma 5. She 

has further pointed out that the imbedding results of the 

present paper extend to the lattices of all binumerations, of 

the fixed theory. P , regardless of axiom set, which se deno

tes "burkf , in either of the two orders -̂ 2
 o r ^3 • ̂h*® 

is true because, given a cc £^ (I in R-tm^ 1 there is always 

(&' binumerating the same axiom set as oc so that 

00 ̂ 2,3 fi' ̂ 2,3 P • T h e existence of ft* can be proved by a 

recursion theorem construction like that used to prove Theo

rem 1. The results do not extend to B^rvp under s*̂  since 

there are pairs ©c -4̂  /3 in B*t*v? in which ft enumerates 

an axiom set obtained from the set A enumerated by cc by the 

addition of some single non-axiom theorem. 

In recent work, Jeroslxw [J 731 investigate® the sugges

tion of Kreisel CK 653 that the full description of a formal 

system should include the detailed rules for production of 

terms, formulas, and axioms within a context like a Post Nor

mal System. .From this viewpoint, the separate binumerations 

used in C-? 603, [H 711, and the present paper would not cor

respond to the amae. formal system but, of course, there will 

be many different formal systems for the present system P , 

and they will be recognizably distinct in ? , In another pa

per we will investigate the effect of restriction to sets of 

axioms obtainable by substitution into a finite set of schemes. 
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1. Injection theorems* We wish to show t h a t a r b i t r a r y 

countable posets, F , can be order-isomorphic a l l y in jec ted i n 

to the set of p . r . binumerations for a r i thmet i c , ordered in 

any one of the three ways above. Theorem 1 covers a l l cases , 

by assuming an unspecified preorder r e l a t i o n ( re f lex ive , 

t r a n s i t i v e ) , 3 , among the p . r . binu merat ions, subject to 

the conditions (0) and (1) below, and we consider F to be 

enumerated as 4 ^ ,/|%a , . . . , - f i ^ v « . ? with the ines sen t i a l con

d i t ion that P has a g rea tes t element, ^ , and a l e a s t -ele

ment, jp,- .The construction of the in jec t ion proceeds by in 

duction on a strengthened induction assumption necessary to 

provide that "suff ic ient space" i s l e f t a t each stage to con

t inue . To make th i s p rec i se , we requi re a de f in i t i on . 

Definition 1: Let L be a l a t t i c e with order =? and Fj , 

F^ two f in i t e subsets of L . Write 

Pf =*e F2 for ( 3*,/^) (y e F1 A ^ £ Fa A « 6 ^ ) 

F ^ . # ^ F a for CV#,^)Ca e ^ A ^ e F a « - » x&c^) . 

Similar definitions hold for -$e and -<^ . A subset, M , of 

L , is called dispersed (in H ) iff: 

For each pair, -C,, F^ of finite subsets of Jd 9 

whenever A c ^ V P « then F„ £0 F* . 

Note that the word "disjoint" may be inserted before "sub

sets" and an equivalent definition results. 

Each of the three preorder relations (FO,-) - (POfc) is 

induced on the set of p.r. binumerations by a (p.r.) mapp

ing, written M^x , from binumerations oc to formulas JA^X , 

of P4* ,with at most one free variable, by the condition (0), 
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below: 

(0> ^ 3 e*a <«> M ^ * -* M^x 

where the mapping M satisfies an additional condition, 

(1): 

(1) If l-^x » 0 ~* ot̂ x . 0 , then |-+jiâ  x - * ^ * . 

Theorem 1: Let P be an arbitrary countable poset, 

as above and M a mapping satisfying (1). Let £c£, * 0 J , 

c^ «•? % d j be a non-degenerate interval of the p.r. binu-

merations-lattice under 3 . Then T can be order iso-

morphically (and dispersively) injected into ZcTD,ot0J . 

Proof: We begin the construction of an injection G , 

as follows: 

*<4*x> - d% . 

The set of images loo0,d^ J is a dispersed subset of the 

lattice of p.r. binumerations under 3 . Suppose that & 

has been defined for jp,A, fa%t..., -fi^ and that Ĉ-C-f-*-,-

4t£;«t.,4ij-|,}). is a dispersed subset. We must extend if to 

r̂tv4-4 , and'for this definition only, denote the strict 

order of P by < \ Let 

A * {co^ >..., oCj J be the images tfCfi^) for #/» > ̂ 4 , 4 

3—4(1^ ,,.., |Ĵ  } be the images tfC^) for 4*,, 11 4*̂ 4.4 

D • *«**„-••'> <**,* J b* tfa« images eTCfw ) for $, <c ^ ^ 

m) Free variable formulas are intended to have the genera
lity interpretation. 
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>> m 4, 2,,,., m, . 

Define p . r . c h a r a c t e r i s t i c funct ions ec^cf by 

QĹ m Où» 
*Чt A OG * .. A <*« 

The primitive recursive recursion theorem, Kleene CK 581, 

is used to define <y«* > "to
 D e
 designated ffC^^,^) ^

n 8 u c l 1 

a way that if tfC-C-fiv,..., T%^}) is dispersed, then so is 

CC«C>^^..,^,>fv^
+
^ j ; . 

foT^ u n t i l a clause below applied (2) 

?*u\ 

Л i f Зv<jtCfcPřy,lЗfЗ>rCA,B,3),r>,,> 

лV* A v B*í(», т J O ( y , A t » , э Г ) 3 

«** i f з ч . # J C :itt£(< Г l ^ m x y . A ^ . p Г ) 

Definition (2) should raise a number of questions, to be 

answered below. The formulas ^KD and ND,^ are p.r. ex

pressions which correspond to the two ways in which dis

persal could be lost when y is added. Note that y«x is, 

and remains, cfo if the failure of dispersal is first at

tested by a proof, in ? , of K3).y or dispersal doe® not 

fail; and becomes and remains «*.* if dispersal fails and 

is first attested by a proof of ^tib . The latter never 

happens, and the definition is (externally) fradulent, to 

the extent that it never does more than define a new name 
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for the characteristic function of the same fixed axiom 

set. 

Since, by the induction assumption, aT-Cfŝ ,..., . ^ j ) 

ii dispersively injected, (0) and (1) give us: 

(3) For each M,,!,, I-^M^ x —*» M̂ .-x 

and hence, K-My* —*• &«,* * 

Now, once we verify that (2) is a proper application of 

the p.r. recursion theorem, Theorem 2*12 of CF 621 will en

sure that (2) is provable in P* and, hence, 

(4) For each to, I- M^ x — • M. 
% f X 

For each -v , k A * — > M x 

0,y (A ,B,J,^) expresses that the set A u B u I u { ^ | 

is not dispersed because the definition fails for some pair 

^i i ̂ a °^ * u^ €* s w--th y « ?2 • It is not difficult to see 

that, in the present case, this is adequately expressed by 

the finite disjunction of P4* sentences of the form: 

(5) v * c \*A**^^rvV .* -V° 

one for each pair B^ y 3 a of subsets of B with B' -p« B2" 

By convention, the upper corners translate this sentence 

into the language of P , and calculate its Godel number. 

Similarly, ̂ OT(/y,A,B,D) expreasea the other manner of dis

persal failure, with % m. F^ by the finite disjunction of 

sentences 
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(6) y*(^A^rl,-*Vv»»,,) ' 

For, i f dispersal does f a i l when f i s added there wil l 

be an inequality (with f on the l e f t or r igh t , but taken 

l e f t for i l l u s t r a t i o n ) so that for d is jo in t pairs of sets 

A \ A 2 S A * , B*-BaS B 5 B4,Bf t &S j 

7 A A A 1 A A B V AD1 4 VA*v V B 2 v VID* . 

Since this expresses failure of dispersion and, by (4) 

¥ £ ofr-l, ) *L m 49;*9.& , we see that Aa « <£ « Again by 

(4), dj^ 4 ̂ f , ̂ ••'f,...,^ ?so that unless I)4 « <{> the in

duction assumption is violated. Thus, a fortiori, an-ine

quality of the form 

Y A oc A A 31 3 cT v V3 a 

must follow, where B4 -?e B
2 , and this is of the form (6). 

Finally, note that the incorporation of these formulas in

to the definition of <y requires only that the index of y 

appear in the defining clauses and, hence (2) is a proper 

application of the p.r. recursion theorem. 

We let 6(4*^+4) be <y and first show that the set 

6*C<^ ,...,41^,^,-^4$) has the dispersion property, and 

next that it is order isomorphically injected. If disper

sion fails, there will be two disjoint sets, B 4 and B a , 

as above "expressing" the failure of dispersion* There are 

two cases to consider. 

(i) T e F • Since dispersion fails, we have 

( 7 ) K ^ A I ^ , * - * ^ ^ * ' 
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and hence 

|-+ rKBfy ,A,B,S>) . 

Thus, tii©re.is a natural number, cry , for which 

Hj.BtffO^, r
r KDCr,A ; B,Dr) , 

and, by provability in P* of (2) , 

J-̂ Vx Cra < x —* r * » <*"* > • 

Howavar, sine© r and oc are, in fact , equal for a l l ar

guments, we get in the usual way, 

(8) j-+Yo<Crx « <**) . 

Hence, 

(9) | - + Y x ( A B V o o A r ^ ) » A B 1 A eoCx)) 

and, by (1), (7), (9) , 

(10) 
' + M AJ 1 A oe* ~~* M VB -v<f * 

which contradicts the assumption of dispersion of 

(ii) r • ̂ V • In "^^ caflft we k®v®> similarly, 

(11) l + MA»W*-**Wvcr v r* 

and, by the same sort of argument, obtain 

(12) |~+Y*(cr,x «r*> 

|-+V* C V»*v dV r C* > -r V B a v d"Ĉ <)) 

and,again by (1), (11),(12), 
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(13) k*-A^A**-*
MV*-v/'*' 

contradicting the induction assumption. This proves the 

dispersion of SUfy,..., ^ ^ 1 ) • 

It is immediate that the correct (strict) order pro

perties are possessed by the new element 6* , by (4), the 

contradiction yielded by (8) and (12), and the following. 

Suppose that T were comparable to some (li $ then either 

(a): y ^ ly. or (b): /J. •$ y , In case (a) we have 

(H) h.Mr»-->Jij|x 

which leads again to the contradiction of (?) - (10). In 

case (b) we have 

(15) M^*-». .v 
leading to the contradiction of (11) - (13). This shows 

that the injection € can be extended and thus, by induc

tion, the proof of Theorem 1 is complete. 

Definition 2: A subset, -M , of a lattice L will 

be called independent (absolutely) independent in CM 72 3) 

if, for no two disjoint subsets Ej, Fa of M , may we 

have A & V . 

* h 
Corollary 2: If the poset ¥ , of Theorem 1, is an 

antichain (no two elements comparable), then ff.(7)' is an 

independent set, in the sense of Definition 2. 

By Theorem 3, below, it will be seen that it suffi

ces to prove a restricted version of Theorem 1, in the ca

se when T? is an antichain, but the proof is not essen-
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tially simpler. 

Theorem 3 was formulated and proved by M. Adams, of 

Bristol University, in response to a question asked by 

fljyhill. The same result follows from Lemma 4.1 of CB 67 3 

and Theorem 3.10 of CBH 673. However, we give Adams' proof 

here to make the result available in the present context • 

Theorem 3: If P is an arbitrary countable poset, and 

L is the free distributive lattice on a countable inde

pendent set of generators, then P can be order isomorph-

ically injected into L . 

Proof: The proof is like that of Theorem 1, and we use 

a similar notation. The induction assumption is, again that 

the subposet {<fKj»«")4-fo} &as been order isomorphically in

jected, by er t onto a dispersed subset of I* . Let 

A s. ^J(i, \'\&* & m> A/fi^+/ f < <$>£ , A! « erCA) 

T) * ^{^z to*mA&H* ^ 4 1 , v'm ercD) 

*x a* AS(A)=s-A (instead of the previous notation A A ' ) 
A' 

We use a lemma of Balbes tB 673, Lemma 4*5. 

Lemma: In the free distributive lattice on an inde

pendent set of generators, if we have 

(17) A v Ay,,, v A 4 A v A v ... v A 

where the sets S^,...,S^- T^,...,T^ are finite, non-empty, 

sets of generators, then for each S^ , there is a T^ so 

that T« is a subset of S, • 
3" -v 
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To prove the Theorem, note tha t by the induction as

sumption of dispersion* cf< oc . Choose a "new" generator, 

©̂  9 not yet used in forming e'C'f^j,), 1 .6 *k * m, 9 and con

s t ruc t 

( 1 8 ) 6 (M, )m *m oc A CdV <£-•> « c f v Cot A<J,> . 

From the independence of the generators , d1 * ? 4 oc . Sup

pose next, that for some H î M . ^ ^ , 5*C^VJ) i s related to 

/y , Suppose &(<fr>)3 ^ , i«e. 

(19) ' erC^. ) ^ oc A CcTv q.) -? cTv 9, V 

Then, for the appropriate f in i t e se ts of generators» 

(20) A v , . . v A ^ A v . . . v A v ox . 
&, SR T, T S ^ 

By Balbes'Lemma, for each S.| , there is a T^ (or iq,} ), 

T^. £ S^ (or -Ĉ lt s S^ ). However, the parenthetical re

mark is not possible and, again by the lemma, we conclude 

6*C>fv.s )3 d" . This is not possible, since the induction 

assumption of dispersion would require 6(411) 3 SCft^) for 

some ̂ s D and by the induction assumption on order, 

^i ^ 'P'Jk, ' s--nce we B-ust have -f^ rf 40,̂ .4 ,we get a contra

diction to the choice of fyi \ \ 41*^+4 » 

If we suppose T £ 6~C<fV'> ,then 

o C A ^ i COC A t ^ l v / ^ PC^) 

and, for suitably chosen generator s e t s , 

(21) Л Л v . . . v Л « ( Л v , . , v Л ) л a á Л v... v Л 
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where T £ » T-J,VC<^> , 4 £ £ .£ * # In t h i s case , Balbes ' 

lemma requi res for each T | , an S^ with S4 £ Tj, . But 

since 9, i s a new generator, S«j, £ T3, , and the lemma r e 

quires oc .^tSfC-fi')*.a contradict ion i s produced as before. -

Thus the se t < ^^ > ••• )<tv/7V)'f\+tf?is order isomorphically i n 

jected in L • I t remains to show tha t the image se t i s d i s 

persed. 

I t suffices to consider d i s j o in t s e t s of &({<fi,nf. .• 

»"*fr*j.A$)> A A V « There are three cases to consider , 

( i ) : Y ^ P ^ u P j , which i s t r i v i a l , ( i i ) T • Rf l» a n d ^ i i i ' ) : 

y e P , Suppose ( i i ) . Write 

(22) 

Hence 

Write 

F„-ÍГ* F 9 -

A л t * л a , ) á V 
F-,-ІГ. ғ г 

A /s oc = A v . v A and V s A v... v A 
Fi-Cr! 5-i ** Fn T 1 T <*> 

where the s e t s S^. . . , % •, T,, . . , , T^ are f i n i t e s e t s of ge

n e r a t o r s , excluding 9. -» Then 

(23) A v „ , v A 'sS A v... v A 

where S ' «• S^ u -{ô } . By Balbes* Lemma, for each S4, , there 

i s a T* „ T. S SI . But, a l s o , T ; E S ' --Co.* , and hence, 

(24) A A A.rf y 

Now, by the induction assumption of dispersion, there is 

a pair, <€,,$>, e- (?,-(rJ)i; A' , $ € Fĝ  , so that erf <j> . 
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If t * F.., ,the same pair < e, <£ > is effective for the 

sets Fn , Yz in the dispersion definition. If e $ F^ » 

then e e -4' and since y 6 t the pair <Ti <f>> is effec

tive, since f e P,| • 

If (iii), y e. F n , write 

(25) A 5 V v / v f c c A 4 ) 

and, by the Balbes'Lemma argument, A 6 V v<f=- V v V , 

By the induction assumption, there is a pair, e © F^ , 

<f 6 CF^ -{yj)uD', so that e <£ <J) . If <J> 6 F^ then the 

pair < £, ̂  > is effective and, if not $ 6 2' and 

4> -̂  T T € ^i t ao that the pair < &, a*- > is effective. 

Thus Theorem 3 is proved. 

2. Separation theorems 

A requirement of the basic injection result, Theorem 

1, is a non-degenerate interval of binumerations tefQ 9 t&Q], 

S0 < oc0 , into which the injection takes place. The exist

ence of such intervals for the order -̂ 3 ^induced by con

sistency statements, is well known, and the properties of 

the lattices of binumerations under this order are explored 

in Hdjkova* [H 711 « In this section we show the existence 

of non-degenerate intervals (within each ^3 equivalence 

class) in the r^ order, and, again (within almost all 

:£- equivalence classes) in the £4 order. 

We first show that it is possible to choose inequi-

valent binumerations, (3 -^ (3' , which are equivalent in the 

^ 2 sense, |3 a /2' , This is quite easy for functions /3 
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which s a t i s f y a mild additional r e s t r i c t i o n ; t h a t for some 

f©rmula,F , ©f P , which i s n©t an axicm, we sha l l be able 

t© prove, i n P+
 f t ha t neither F n©r any c©njunction ©f 

F / s i s an axiom. I .E . we requires 

(26) | - - i 3 ^ < C l P ^ A / i C ^ ) » 0) 

where GIF i s the obvious p . r . p red ica te . Although there 

w i l l be many p . r . charac ter i s t ic functions of the axiom 

set n©t sa t is fying (26) i t i s a very mild r e s t r i c t i o n which 

amounts t© requiring the theory t© recognize tha t i t s axiom 

se t i s contradict ion free, with respect to preposi t ional 

deduction, i . e . i t i s s©rt ©f pre-c©nsistency obtained by 

enforcing an elementary degree of reasonableness on the 

manner of expressing the axiom s e t . 

Lemma 4 : If /3 i s a p . r . cha rac t e r i s t i c function of 

the axi©m se t satisfying (26), there i s another p . r . cha

r a c t e r i s t i c function, /3'.jfor the same axiom se t , s a t i s fy 

ing: 

(27) ( i ) j~+ Yx f|J* * 0 - * j»'x * 0) 

(ii) JfrY*tp*mO«-F*m 0) 

(iii) \-+Y*ilk0V'-X*^-tkav'pM) . 

Pro©f: Let F be as required by (26). Then (3' has 

a simple definition from (I by cases: 

f 0 if C » X A 3 ^ - ^ f f , r » - ^ 

x otherwise * 
(28) ß'(*) 
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The defini t ion by cases i s provable i s ?** and hence, im

mediately, 

(29 k p# » 0 --> fi'x « 0 

To show the reverse implication in ( i i i ) i t i s only neces

sary to observe the following free-variable deduction in 

p + . 

/J' /> 

a^Bif c^.ij-r) 

- C O W , 

y i e l d s : 

(30) U ?*<«/ x —-> Bwnri (X. . (•** /J' /3 

Final ly, i f J- /*'* s 0 -*» j3,x a 0 then, using (28) 

we obtain the contradiction j-» COH„ • 

Next, we turn t© the production of inequivalent binu-

merations in the ^ order wfthin any s 3 equivalence 

c l a s s . 

Lemma 5: Let /3 be any p . r . character is t ic function 

of the axiom set• There i s another, |3' , for the same axiom 

s e t so t ha t : 

(31) ( i ) \iV*(T!*frx--+2*o* ,x) 

( i i ) Jfc Vex (B^cnrx «—B*cnr/(x) 

( i i i ) ^ C O ^ ^ C O ^ , . 
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Proof: As in Definition 1.10 of [H 713 , we take the 

Rosser Sentence for the binumeration 3̂ to be that "•solu

tion" Kn (a sentence of P ) of the basic diagonalization 

lemma for which 

(32) ^ ̂ ^"^ C V/^> T P ^ C1^^, ̂ > -^ C 3»> C* ̂c ̂ .B^^ Ĉ i R.^, ̂  ̂  2 , 

Then, as in Theorem 1.14 of EH 7H the basic proper t ies of 

Jl can be summarized a s : 

(33) U^^-^-^/V 

Now, we form the extension theory P'» F u { C C0Jfj3 } and 

l e t e denote the natural binumeration of the theory ?' , 

with Jt^ as associated Rosser Sentence. We form another 

binumeration (3' ,©f P , as follows 

(34) r 0 if |3x«0 or C Sty^) CP^cTl^1, y,) 

jJ'x. A Í vz,<ч) -л?кiг cr-. к.eV)л Cfc (ГR^ , «) 1 

4 otherwise • 

We obtain immediately from (34): 

(35) \i*Jmtn* ~~* haw'0x 

and, hence, 

(36) L COIf - * CML . 
A' P 

To reverse the implication i n (36) we formalize in?**" the 

following informal deduction. I f —i COH«# , then from (34) 

pAcnr * r - i X P (since P u <IX^J J i s i n c o n s i s t e n t ) . From 

(33) i th i s yields —i CON̂  , and hence we have: 
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(37) bCW^^CftK, • 

Finally, if the reverse implication of (35), i e . 

Bwi^x - ^ B * n £ * , were P* provable, then:-

Г+ fyé 

By (33 ) , 

k * V V - * ^CQN* 
or 

(38) KC 0 K /3^^B^' rV * 
However, by (32) and (34) 

(39) H^^v'v-+*t : 

which, together with (38) yields the contradiction: 

This completes the proof of Lemma 5. 

3* Conclusion 

We can state immediate consequence of the separation 

results in Section 2, and Theorem 1, in the following co

rollaries. The first, for the rĴ / ordering, was already 

obtained by Hdjkova" [H 71]. To obtain ot from Theorem 1 re

quires a trivial change in Conditions (0) and (1), to re

verse the implication on the right. 

Corollary 6: Any countable poset- P , may be order-

isomorphically injected into the lattice of binumerations 

in its trfj ordering. 

Corollary 7: For any countable poset, P , and any 

equivalence class, E ,of binumerations under the 2̂ 3 order

ing, P may be order-isomorphically injected into E# in its 

3^ ordering. _ 241 



Corollary 8 s For any countable p©set, P , and any 

equivalence class, F 7 ©f binumerations under the ^^ or

dering, where elements of P satisfy, in addition, the 

preconsistency condition ©f Lemma 4, P may be order-iso-

morphically injected into P , in its -^ order. 

The order of the lattice of binumerations, d><$ is 

just the anti-isomorphic image of the order among consis

tency statements for P in the Lindenbaum Sentence Algebra 

(LSA) for P . The orders i^ an<3 --£4 are similarly iso

morphic copies of the order in the Lindenbaum Algebra of 

formulas with one free variable (LFA). As noted earlier, 

the dispersion condition on the injection of Theorem 1, 

when applied to a countable anti-chain P , yields a set of 

injection images which are independent in the parent algeb

ra. There is a history to this problem. In a recent paper, 

Myhill [My 711 includes a proof of the existence of a set 

of 2*^ sentences independent in the LSA of P .He comments 

that the result can be strengthened to prove the existence 

of a single Sjj formula, with one free variable, A* , for 

which the set -LAO, A 0 M ,**.,AO ,... } is independent. 

Kripke has proved this latter result in tKrp 62] and cre

dits earlier solutions to Mostowski [Mo 60] and to Fefer-

man and Scott. Another proof is implicit in Lemma 3.1 and 

Theorem .3.1 of [J 721. 

The uniformity condition leading to the set -{AOjAÔ V., 

• •• j AO ** ,..» 1 can be built into the proof of our Theo

rem 1, by including an additional variable in the defini

tion of 7,(2) , 
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This variable would be used to w regulate * the lengths of 

the clauses yND and H$y> to provide for the successive 

injection of more elements of the anti-chain P « Hence we 

state one further corollary which "improves" the Kripke re

sult to formulas with no unbounded quantifiers. 

Corollary 9: There is a p.r. formula EF 603 of P 

with two free variables, Ax/$ , so that the set 4A.xO, AxO 9 

...jAxO ,..,} is independent in the LFA. 
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