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CÖШENTATIONES MATHEMATICAE UNIVҠRSITATIS CAROLINAE 
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A WEAKLTГ PSEÜDOCOMPACT SUBSPACE OP BANACH SPACE IS WEAKLI 

COMPACT 

David PREISS, Pet r SIMON, Praha 

A b s t r a c t : The aim of the presen t paper i s to prove the 
theorem mentioned i n t he t i t l e . Beside t h i s , a shor t and d i 
r e c t proof of an equivalence between the L indens t r auss , cha
r a c t e r i z a t i o n of an Ebe r l e in compact and the Rosenthal s one 
i s g i v e n . 
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--*• De f in i t i on t L ] • A compact Haasdorff space X i s 

c a l l e d an Ebe r l e in compact, i f X can be embedded i n t o some 

cube C 0 , A ] i n such a way t h a t for each x e X and for 

each r e a l e > 0 the s e t i^r e T |o< (y)> e ] i s f i n i t e . 

2» Theorem [R] . A compact Hausdorff space X i s an 

E b e r l e i n compact i f and only i f X admits a 6* - p o i n t - f i n i t e 

family of cozero s e t s weakly separat ing points of X * 

Proof . Necess i ty : Suppose I c [ 0 ) 1 ] p be an Eber

l e i n compact. Let us def ine C• ^ ^ =• jr" [ J*~ / n ; *frti C JnX 7 

where Tfy i s the y - t h p ro jec t ion , ^ « -( C^t^)/a \£ -
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Clearly each CJ.VJ^ -*-8 a cozero set. 

The family ^t^ is point-finite: Suppose contrary. 

If X e X belongs to infinitely many CJ, ̂ ^ s *T̂ n , then 

there must be infinitely many indices <y such that 

xf'jr) >• /m, , which is a contradiction. 

The family *£ weakly separates points of X s Let <* , 

^ s X . , x - j ! ^ . Then for some # e V, x (y) + ^(3") . Assu

me xOy) <-.ty(y) . There exists a natural nru such that the 

following two inequalities take place: \^(^) - x Ĉ )|>- /m*; 

^ C y ) -> 'Vm, * Now it is obvious that for some na

tural •%> the point ^ belongs to 0^,f^tm/ and x $. ^^^a. * 

Sufficiency: Let SS-.U-t€^J/^«6>J be the sys

tem of cozero sets weakly separating the points of X with 

each ^ ^ point-finite. For every C 6 ^ ^ there is a 

continuous real-valued function £c ; X — > C 0 - 4 1 such 

that £ c mc za,1//*i9 c^f-hifi^iijX-c^f-hoi . 
Define f : X —> t 0 , 4 ] ^ by the rule y <x) «r 

s r - ( £ c ^ ) | C e ^ } * Then the mapping ijr i s an embedding, 

s ince ip i s continuous ( a l l .£c are continuous) , one-to-

one ( *£ weakly separates p o i n t s ) , and both domain and ran

ge of if are compact Hausdorff spaces . 

Let / ^ = * i f r C x ) ; m £ 4 be a natural number. The 

system © « «tC | C c ^ u «£2 u . . . u ^ , x e *€ } i s f i n i t e , 

because a l l *5f̂  are p o i n t - f i n i t e ; l e t C e <£ - 3i . I f 

C 6 ^ ^ for i -4 m, , then 4L f C )=. £Q (x ) ** 0 , i f C « <$, 

for I ><n -then AL .CC) a £ c C x ) £ V-L <: ''/m, . 

3 . Proposit ion. Let X C [O. ' l i l be an Eberlein com

pact , x e X . Then there e x i s t s an embedding f of X i n -
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to some cube C 0, Al such tha t if £X 1 has the pro

perty needed in Definition 1 and if (&) C<f) » 0 for a l l 

c f c A • 

Proof* For A^VxiO^Ai l e t us define the embed

ding f by the following: if Cn^) =.- z, 9 where z, (y, 0 ) == 

Using the obvious inequal i ty i|f f ̂  K3* <i) .£ xxf^)-f/^('y)^ -tv* 0, 4 

one can eas i ly check tha t i fCX] has a l l the desired proper

t i e s* 

P 
*• Lemma. Let X c T 0^ 4 3 be an Eberlein compact, 

0 + A c J C , 6 :> 0 . Then there ex is t s a f i n i t e se t 

.PCA, s ) with the following properties: 

(i) The set {o(eA l^eFCA, e) — > ocĈ -) > s } is 

non-void, 

(ii) If for * € A ,oc6y) > e for all 7 e P ( A ? e ) , 

then .x (y) £ e whenever ^ ^ FCA, e ) . 

.Proof* By the method of contradiction, suppose that 

each finite TcT satisfying (i) does not satisfy (ii). 

Tnus we can inductively construct a strictly increasing se

quence F^ J T2 $ P3 $.*« of finite subsets of V , such 

that for each m, the set i ex c A | <y € F^ -••»> * Cy) -> 6 > 

is non-void. 

Setting K ^ ^ A . . * e IT 0,41 [ye T^^x^xC^^e},we obtain 

that }{,„, n .X 4= 0 for all /u c co , and since JC^ ia a 

decreasing sequence of compact subsets of C 0, A 1n , X is 

compact, there is a point tifr* e -X n /O *CX/n. | m, € o> 1 • But 

then ^-C-y) 2t e for infinitely many indices *y of T , 

which is a contradiction. 
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5* Theorem. Let 1 be an Eberlein compact, x non-iso

lated point of X . Then there exis ts a sequence { U ^ j t u c cat 

of open sets in JC , which converges to X 

Proof, According to Proposition 3 we may assume that 

I c C 0 ^ ] r and that x C-y) « 0 for a l l r c T -

By induction we shall define for a l l natural m, f i n i t e 

sets of indices T^ , open neighbourhoods V^ of x and 

open subsets U ^ of I * 

Define E, -r 0 , t£, «. TC, = X . 

Let AVEO) and suppose tha t T^} U ^ and V ,̂ has been 

defined for a l l Jk, s 4, 2, ...9 m,- 4 , Define 

*v •s't 

there exists an T^ = F( V^, V/TV) C T with properties ( i ) , 

( i i )* 

Clearly F^ o , L^ P; - ^ , Define T l ^ ^ ^ e ^ ^ c F^=> 

.===->/j£, 6^) > ^/^J * Obviously U^ are open. It remains to pro

ve that U ^ converge to x * 

Let W be a neighbourhood of y # Then there exist a na

tural number m, and a finite subset D of indices such 

that 

Since ID is finite and since J^ are disjoint, the

re exists an rm, e K , rtrv > rn, such that J^ o D = 0 when

ever K 2: cm , Let x> > rm 9 ty e XiKr tfe D . Since ^ e l ( ^ and 

since <y ̂  P^ 5 we may apply (ii) from Lemma 4 to obtain 

that /^(r) ̂ ' V A ̂  ^ < r % t .Thus r^ e ¥ 0 c ¥ . 
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6« Corollary. A pseudocompact subspace of an Eber-

l e in compact i s closed and hence i t i s an Eberlein compact, 

too . 

Proofs Supose, on the contrary, that y c JC i s pseu-

docompact, Y 4* X and y s .X . By Theorem 5, l e t -VU^ i 

be a sequence of open se t s converging to a point x c X - Y $ 

choose a point cx^ c U^ n y and l e t Us*.X-{x,u \m, cN*} . 

Then - t l i^o Y\me.M\ u «CU nY? i s an open inf in i te locally 

f i n i t e cover of Y - a contradiction with pseudo compactness 

of y , 

7» Corollary. Let X be an Eberlein compact, ¥ cX 7 

y ^ x . Then /3Y 4- X . 

Proof. I f X - / 3 Y , Y ^ X , then OC-r /JOC-fan for 

any j< e X - y • This implies that X - -{o<i is pseudo-

compact, which contradicts to Corollary 6. 

®* Remark. Now, the theorem stated in the t i t l e i s an 

easy consequence of the theorem of Pt&k: 

£P , p .2811. A weak closure of a weakly pseudocompact subspa

ce of Banach space i s weakly compact, 

of the theorem of Amir and Lindenstrauss: 

LAL, p . 3 6 ] , [L, p.236]. Eberlein compacts are exactly the 

topologica l spaces which are homeomorphic to weakly compact 

s e t s in Banach spaces, 

and of Corollary 6. 

9* Example. I t i s not true in an Eberlein compact that 

t o every sequence -Cx^l of points converging to a point 

X , one can find a sequence 411^? of open se ts , each TI^ 
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being a neighbourhood of x,^ , converging to a point x 

too, though it may seem to be a natural strengthening of 

Theorem 5. A counterexample is easy: 

Let P be a one-point compactification of an uncoun

table discrete set, -f2, the non-isolated point of P 9 and 

let ^ be some other point of P . The space X -» P > 

as a countable product of Eberlein compacts, is an Eberlein 

compact, toe. Let us denote X^, the point of .X , whose 

first t?v coordinates equal to <fb , and all other to q, • 

The sequence -ix^} converges to a point x 7 whose all 

coordinates equal to & • 

Now, let U ^ be a neighbourhood of X^, $ because of 

uncountable cardinality of P there must be a point 

& € P K T T I CTI/TV1 J <n e }{ } . Thus, whenever 11 is a neighbour

hood of x such that H e st* C P- Ot,) J , then U^ - U is 

non-empty for every natural <u . 

10• Remark. A topological space X is called to be 

Fre*chet, if for each A c X , x e X — A , there is a sequen

ce -Cx^? of points of A converging to x • 

Let us define a topological space X to be strongly 

Fre*chet, if for each A c JC , x e A - A there is a sequen

ce 411^} of sets relatively open in A converging to X • 

An Eberlein compact is Frenchet and, according to Theo

rem 5, strongly Fr^chet. There exists a Fr^chet, strongly 

Fre*chet compact Hausdorff space which is not an Eberlein 

compact. But we do not know if each Fre*chet, compact Haus

dorff'" space is strongly Frdchet, nor we know any counterex

ample to this statement. 
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