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A NOTE ON A LOCAL ERGODIC THEOREM 

Sjfstaro SATO, Sakacb 

Abstract: Let U p < OP and let T = «( Tt: t > 0 ! 

be a strongly continuous semigroup of bounded linear opera
tors on L of a finite measure space which is assumed to 

be strongly integrable over every finite interval. In this 
note we consider the problem of the almost everywhere con
vergence of the average -£- J Ttf dt as b — • 0 . 
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1. Introduction and theorems. Let (X, $ , (U, ) be a 

finite measure space and L ( ft-) = L (X,̂ t,) = L (X, f , ̂  ), 

1 £ p 4 oo , the usual Banach spaces. If A e W then 

L (A, p , ) is the Banach space of all L ({U.)-functions that 

vanish a.e. on X - A . Let V = 4Tt; t :* 0> be a strongly 

continuous semigroup of bounded linear operators on L ((U,) , 

where p is fixed, U p < oo . This means that Tt is a 

bounded linear operator on L ( <u, ) , TtT = T++a for all 

t, s > 0 , lim I T+f - T0f I ̂  = 0 for all 3 > 0 and 

f «• L ((tt) . Throughout this note we shall assume that T is 

strongly integrable over every finite interval, i.e., for 

each f e L (j*) the vector-valued function t —-*- Ttf is 



Lebesgue mtegrable on every finite interval (a, b) c 

c (0,co ) . It follows (cf. L2, p. 6863) that for each f e. 

€ L A p ) there exists a scalar function T tf(x) , measur

able with respect to the product of the Lebesgue measurable 

subsets of (0, oo ) and & , such that fox almost all t , 

T tf(x) belongs, as a function of x , to the equivalence 

class of 'fc.f . Moreover there exists a set N(f) e & with 

(U, (N(f)) = 0 , dependent on f but independent of t , 

such that if x £ N(f) , then T tf(x) is Lebesgue integrab-

le over every finite interval (a,b) and the integral 

J T«(x) dt belongs, as a function of x , to the equiva-
cu 4 

r4* lence class of J T+f dt . Hence, from now on, we shall 

b A? 
write S^f(x) for f T +f(x) dt . The purpose of this note a i/ej, x 

is to investigate the almost everywhere convergence of avera-

i h 
ges -— Sjrf(x) as b — • 0 . 

In t i l Akcoglu and Chacon proved that i f Y = {T t \ 

t > 0 \ i s a posit ive L^-contraction semigroup, then the l i 

mit 

(1) lim — S*Jf(x) 
-fr*-* 0 ir ° 

exists a.e. for any f m LAp,) . See also Krengel C 3 3 and 

Ornstein [73 - Later in C4l Kubokawa proved that if T = 

4 T t ; t > 0 } is a positive (not necessarily contraction) 

L,-operator semigroup and satisfies strong-lim T. = I (the 
•*• t —> o x 

identity operator), then the limit (1) exists a.e. for any 

f e L 1(^t) . Recently Kubokawa [53 proved that if T = 4 T t ; 



t > 0 I is a (not necessarily positive) L^-contraction se

migroup satisfying strong-lim T^ = I , then the limit- (1) 

exists a.e. for any f e L^(^) . In this note we shall pro

ve the following results. 

Theorem 1. Let 1 g p -c oo and T s^T. ; t > 01 

a strongly continuous semigroup of positive (not necessari

ly contraction) operators on L ((U.) . Assume that 

lim sup II T+f II ̂  £ I f l| „ for any f e L(<u,) . Then the 
t - * o t P P P 

limit (1) exists a.e. for any f 6 L (<u,) , provided (i) 1 -*-

<-: p «*-* bo , or (ii) p = 1 and there exists a strictly posi

tive function h e L-^fi,) such that the set \ T+h ; 0 -< t -c 

«-• 1 } is weakly sequentially compact in L^((U-) . 

Theorem 2. Let T = ^ T t ; t > 0 } b e a strongly conti

nuous semigroup of (not necessarily positive) contractions 

on Ln(^c) . Assume that there exists a p > 1 such that all 

the T+ map L (/U.) into L(/u) and sup II T+ |l -*s oo . x P % P v Oct <4 x P 

Then the limit (1) exists a.e. for any f m L^((t>) . 

2. Lemmas. For the proofs of the above theorems we need 

the following lemmas. 

Lemma 1. Let A = ^ %L » t > 0 ̂  be a strongly conti

nuous semigroup of bounded linear operators on a Banach spa

ce B . Assume that the set < ^ f ; 0 < t < 1 1 is weakly 

sequentially compact for any f € B . Then ^ ^ converges 

strongly as t — > 0 , hence if we let ^ = strong-lim | t 
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then *( f t » t i s O j i s a strongly continuous semigroup on 

CO, oo ) . 

Proof. By the uniform boundedness principle £2, Theo
rem II .1 .113 , sup II £ +f II «= oo for any f e B . Hence 

0 - . t < 1 T t 

again by the uniform boundedness pr inciple , 

(2) sup II %+ II ^ co . 

I t follows that 

(3) 4 f e B ; lim II E +f - f II = 0 } = U f .B . 
i - * 0 t t > 0 J t 

Since for any f e B there exists a closed separable subspa-

ce Bf of B containing f such that f ̂ B^ c B f for 

all t -> 0 , to prove the lemma it may be assumed without 

loss of generality that B itself is separable. Let «C fn ; 

n is 1 } be a dense subset of B . Then, by Cantor's diagonal 

method, we can find a strictly decreasing sequence t-, , t2,... 

of positive reals with lim t = 0 such that weak-lim f tf.t 
m- n fth ^ x 

exists for all the f. . Thus by (2) and an approximation 

argument, weak-lim f t f exists for any f e B . Let f n = 

-s weak-lim f . It follows that f t f 0 = f t = ^ o ? t 

for any t £ 0 , and any f 6 B can be written as f = f^ + 

+ f2 , where § Qf x = f^ and ? 0
f2 = ° * T h e n» since £i = 

=- weak-lim f + f, , we have by (3) and the Hahn-Banach theo-

rem that lim II % tf^ - f, II = 0 . This completes the proof, 

since f +f « f ±f1 for any t -> 0 . 



Lemma 2. Let r =- 4 T. ; t^ 0} be a strongly conti

nuous semigroup of positive linear operators on L (p,) , 

where p is fixed, 1 4 p -̂  a> . Assume that 

strong-lim T. = I . Then for any f e L(/U.) 
t -* 0 t p -

where A(f) =- 4 x ; sup S^f (x) > 0 for any oc > 0 } . 

Proof. Since p, is finite, we may assume without loss 

of generality that (U> (X) = 1 . Hence, by Holder's inequa

lity, A f II x -4 II f II for any f * L ($4,) . Let D = 

-= 4l/2n ; n S 1} . Then given an f e L (<U/) and an e > 0 , 

we can choose a cT « D such that 0 •< t ?£ cT implies 

"V^ACf)*11 1S (1 - * > " f" XA(f) 'I 1 

and 

l V* 1 1!-' (i + e )ít*í1 

Let K = sup II T+ II ^ (--c ca ) , and choose an 'w e D such 
0 « t £ c r t p ' <-

that 

2K<» 
0 * - - = — i l f ~ t t n - * e . 

c r - ^ P 

It may be readily seen that there exists a positive integer 

k and a measurable subset A of A(f) such that k% and 

k(oP - ij, ) are integers* 



sup Җ (T, /v)
гf > 0 a.e. on A , 

and 

-"•'"ЧЦf) - A õ p " Є 

Therefore a slight modification of the argument in Kubokawa 

t4 , pp. 463 - 4643 shows that 

( 1 -*> ^AW f - d f~* ( i + *> / x

f + d ^ + -7r^ 1 - | l *~ l i

P 

+ X
«

f
"-A(f)-A«p 

< (l + e) / f + &(U, + 2 e 

This completes the proof, since e is arbitrary. 

Lemma 3. Let T « -C T
t
 ; t > 0 ? be as in Lemma 2. 

Then the limit (1) exists a.e. for any f s L (^) . 

Proof. By virtue of Lemma 2 the proof is the same as 

that of the theorem in C43. 

It should be noted that Kubokawa C6 3 also gave a diffe

rent proof of the above result. His method of proof is depen

dent upon the use of another local maximal ergodic lemma 

which is similar to our Lemma 2. 
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3 . Proof of Theorem 1. By the uniform boundadness prin

cip le , sup II T+ |I •*: co . I f l«-= p *= oo , then the 
0< t -c f ** P 

space L (JM,) is reflexive and hence the set -C Ttf ; 0 *c t <: 

«-z 1 } is weakly sequentially compact for any f € L •((**) . 

If p = 1 and there exists a strictly positive function 

h e L1((U-) such that the set < T..h ; 0 -c t •*- 1 } is weakly 

sequentially compact, then it follows from £2, Theorem IV.8.93 

that the set { T+f ; 0 -c t <: 1 > is weakly sequentially com

pact for any f e L^i^o) . Thus in any case, T = strong-li» 

Tt exists by Lemma 1. Clearly T is a positive contraction 

on L ((tt) and TQTt = Tt = TtT0 for any t £ 0 . Let us 

set h = TQ1 and Q = supp h • It then follows that 

TtL (Q,(tv) c L (Q,<o,) and T+L (X - Q,(tc) =-C0> for any 

t is 0 . Therefore to prove the theorem we may assume without 

loss of generality that X = Q . 

Let X be the measure on (X, $ ) defined by d A « 

h pd^ , and let St , t £ 0 , be defined on L (X, X) » 

= Lp(X, r , X ) by 

Stf = — Tt(fh) , f C L (X, X ) . 

Since the mapping f — > fh is a positive iaometry of 

L (X, % ) onto L (Xl(o/), -C St ; t £ 0 J is a strongly conti

nuous semigroup of positive linear operators on L (X, X ) » 

and hence for the proof of the theorem it suffices to show 

that for any f € L (X, X ) the limit 

(4) lim — f S+f(x) dt 
*-*0 to Jo x 
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exists a.e. To see this, however, it suffices to show that 

the limit (4) exists a.e. for any f e L (X, X ) with 

S
Q
f a f , since S* » S

0
 . Let 7 » IA m & ; S

Q
1

A
 » 1

A
 } . 

Since S
Q
1 =- (Th)/h = 1, it follows easily that J is a 

0 -field. We shall now prove that 

(5) 4 f e L
p
(X,Л) ; S

o
f = f } = L

p
(X, 7 ,Л) 

Clearly f e L (X, 7 , A ) implies SQf = f . Conversely 

let S
Q
f = f . Since S is a positive contraction on 

L (X, Jl ) , it then follows that S
Q
 I f I * I f I , and hence 

we may assume without loss of generality that f is nonne-

gative. If a is any positive real, let g =- min(f, a) and 

h = f - g . Then D S
Q
g 11̂  •£ a and SQh £ h . Hence 

SQh « h . Thus if we let A = i x ; f(x) :> a } , then 

SQL (A,A)c L (A,̂ -) and SQ1X_A = 1X_A . Consequently 

f « Lp(X, 7 , X ) . 

By (5) and the fact that SQSt =- S% for any t £ 0 , 

each St may be considered to be an operator on L (X, 7 fX) 

and S = 1 on L (X, 7 ,A ) • Therefore by Lemma 3 the 

limit (4) exists a.e. for any f c L (X, 7 , % ) . The proof 

is complete. 

Remark. The argument in the proof of Theorem 1 can be 

suitably modified to yield a proof of the following result: 

If r = K Tx ; t £ 0 } is a strongly continuous semi

group of positive linear operators on L (ft) with U P--

<• co andr if 0 4 f * Lp(^u) and H f )l ^ 0 imply 
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B TQf I :> 0 , then the limit (1) exists a.e. for any f c 

c L (<*> . 

4. Proof of Theorem 2. By the Riesz convexity theorem 

£2, Theorem VI.10.Ill we may assume without loss of genera

lity that 1 * p <: co . Hence the set { T^f ; 0 < t «: 11 is 

weakly sequentially compact in L ((it,) and hence in L^C^t) 

for any f 6 Lp((tt). Since L (̂t ) ie dense in L-,(<«,) f an 

approximation argument shows that for any f e L̂ (fi-) the 

set K T.f | 0 < t < 1} is weakly sequentially compact in 

L.,(<a,) . Lemma 1 now implies that strong-lia T^ » TQ ex

ists. Clearly T0 is a contraction on ^ i ^ ) an^ TtTo * 

• T^ * T ̂  for any t g 0 . 

, Let fQ be a function in h^(fb) with TQf0 = tQ such 

that if g e L ^ ) satisfies T g = g then supp g c 

c supp fQ £ S 1 . Let Q = supp f and h = 1 f I . Since 

TtL-_(Q,ft)c L-ĵ CQ,̂ ) and T ^ C X - Qf <u,) = 0 for any 

t is C , for the proof of the theorem we may assume without 

loss of generality that X = Q . As in the proof of Theorem 

1, let X be the measure on (X, T ) defined by d X = 

= h d (A, , and let St , t £ 0 , be defined on L-JX, X ) by 

S f s -J- T+(fh) , f e L, (X, X ) . 
x Sfo x L 

For the proof it suffices to show that the limit (4) exists 

a.e. for any f c L^X, .\ ) . Let e be a function in 

L0t>(X, X ) with lei =1 such that eS (e" f ) S 0 whene-
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*er O i f t --^(Xi A ) t « 3 , and l e t Rt , t £ 0 , be d e f i 

ned on LX(X,X) by 

I^f « * S t ( F f ) , - f € L1(X, A ) . 

Then clearly tR^ ; t J O l is a strongly continuous semigroup 

of contractions on L1(X, X ) . Since RQ is positive and 

satisfies R 1 = 1 , as in the proof of Theorem 1 we have 

that 4f c LX(X, X ) ; RQf = f } = L-^X, 0 , X ) where 7 = 

« 4 A t T ; RQ1A = 1A } , and hence each Rt may be consi

dered to be a contraction on L, (X, 3 , X ) and R « I on 

L^(X, 3 , X ) . Therefore Kubokawa's local ergodic theorem 

C53 shows that the limit 

\ JЬ> 

(6) lim Ґ R
+
f(x) dt 

&-+Q Яľ JQ X 

e x i s t s a . e . for any f e L i ( x > 7 , A ) = -Cf € % ( * , X ) ; 

R0f « f 1 , and hence t h e l i m i t (6) e x i s t s a . e . for any f e 

* Lj(X, X ) , s i n c e R0 = R . This completes the proof. 
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