Commentationes Mathematicae Universitatis Carolinae

Věra Trnková
Minimal realizations for finite sets in categorial automata theory

Commentationes Mathematicae Universitatis Carolinae, Vol. 16 (1975), No. 1, 21--35

Persistent URL: http://dml.cz/dmlcz/105603

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1975

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMAENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

16,1 (1975)

MINIMAL REALIZATIONS FOR FINITE SETS IN CATEGORIAL AUTOMATA THEORY

Věra TRNKOVA, Prahs

Abstract: The minimal realization problem in the category Set is solved for finite or bounded sets.

Key words: Set functor, free algebra, minimal realization.

AMS: 00A05, 18B20, 18C15 Ref. Z.: 2.726; 8.713

Let a cardinal $\mu>1$ be given. In the present note, we characterize all functors $X:$ Set \longrightarrow Set such that for each set I with card $I<M$ there exists a free X-algebra over I and each mapping $f: X \odot I \longrightarrow 2$ has a minimal realization (see 4 and 6). Some simple criteria and examples are given (see 7, 8 and 9).

The present note is related to the paper [7], where all input processes in Set are characterized and to [9], where the minimal realization problem is solved in Set without respect to cardinalities. The minimal realization problem in more general categories is investigated in [1], [2],[5].

1. Preliminaries: a) We use the term set functor for a covariant functor $X:$ Set \longrightarrow Set, Set being the
category of all sets, such that $X Q \neq \varnothing$ whenever $Q \neq \emptyset$. If $Q \subset Q^{\prime}$ are sets, denote by $i: Q \rightarrow Q^{\circ}$ the inclusion map $i(x)=x$ for $x \in Q$. X is said to preserve inclusions if $\varnothing \neq Q \subset Q^{\prime}$ implies $X Q \subset X Q^{\prime}$ and $X i$ is inclusion again. By [3], each set functor is naturally equivalent to an inclusion preserving functor. Since we always work with functors "up to natural equivalence" we shall assume, in what follows, that all functors considered preserve inclusions.
b) Let X be a set Punctor, m be a positive cardinal. Define fanctors $\left.X_{[<\mu]}, X_{[\leqslant M]}\right]$ by
 card $P<M$

$X_{[<m]} f$ and $X_{[\notin m]} f$ are the domain-range-restrictions of $X f$ for any mapping f. If card $Q=4 /$, denote

$$
Q_{X}=X Q \backslash X_{[<\mu]} Q .
$$

If $Q_{X} \neq \varnothing$, then 4 is called an unattainable_cardinal of X (see [6]). We recall that a set functor X is finitary iff $X=X_{\left[<\psi_{0} J\right.}$, i.e. iff it has no infinite unattainable cardinals. It is well known that finitary functors may be characterized as factor-functors of $山_{j \in j} \operatorname{Hom}\left(Q_{j},-\right)$, where y is a non-empty set and all Q_{j} are finite sets. The characterization of finitary functors by means of the
preservation of colimits or limits of certain diagrams is given in [2],[5],[9].
c) Let X be a set functor. The category Din X (see [4]) is defined as follows. Objects (called X-dyne= mics) are all pairs (Q, δ^{\sim}), such that Q is a set, σ^{\sim} : $: X Q \longrightarrow Q$ is a mapping; morphisms (called X-dynamorphismg) $f:\left(Q, \delta^{\prime}\right) \longrightarrow\left(Q^{\prime}, \delta^{\prime \prime}\right)$ are mappings from Q in Q^{\prime} such that $f \circ \sigma^{\prime}=\sigma^{\prime \prime} \circ(X f)$. A free X-algebra over Q is a triple $X_{A} Q=\left(X^{@}, \omega_{Q}, \eta_{Q}\right)$, where $\left(x^{@} Q, \omega_{Q}\right)$ is an X-dynamics and $\eta_{Q}: Q \longrightarrow X X_{Q}$ is a mapping with the universal property, ie. for each X-dynamics ($Q^{\prime}, \sigma^{\prime \prime}$) and each mapping $g: Q \longrightarrow Q^{\circ}$ there exists exactly one X dynamorphism $\bar{B}:\left(X^{Q} Q, \omega_{Q}\right) \longrightarrow\left(Q^{\circ}, \delta^{\circ}\right)$ such that $g=\bar{B} \circ \eta_{Q}$. A construction of $X_{A} Q$ is given in [7] as follows.

$$
\begin{aligned}
& x_{0} Q=Q \times\{0\}, \\
& X_{1} Q=x_{0} Q \cup\left(X x_{0} Q \times\{1\}\right)
\end{aligned}
$$

whenever $Q \neq \varnothing, X_{1} \varnothing=((x v) \times \varnothing) \times\{1\}$, where $v: \varnothing \rightarrow$ $\longrightarrow 1$ is the empty mapping,

$$
\begin{aligned}
& x_{\alpha} Q=\bigcup_{\beta<\alpha} x_{\beta} Q \text { whenever } \alpha \text {. is a limit ordinal, } \\
& X_{\alpha+1} Q=x_{\alpha} Q \cup\left(x_{\alpha} Q \backslash \bigcup_{\beta<\alpha}^{\cup} X_{\beta} Q\right) \times\{\alpha+1\} .
\end{aligned}
$$

By [7], $X_{A} Q$ exists iff this process stops, i.e. $X_{\alpha+1} Q=$ $=X_{\alpha} Q$ for some \propto. Then $X^{@} Q=X_{\alpha} Q$ and $\eta_{Q}: Q \rightarrow$ $\longrightarrow X^{@_{Q}}$ is defined by $\eta_{Q}(q)=(q, 0), \omega_{Q}: X X^{@} Q_{Q}$ $\longrightarrow X^{@} Q_{Q}$ by $\omega_{n}(q)=(q, \beta+1)$, where β is the
smallest ordinal such that $q \in X X_{\beta} Q$.
d) Let X be a set functor, I be a set such that $X_{A} I$ does exist. Let $f: X^{@} I \rightarrow I$ be a mapping. The following notions and their interpretation in the automata theory are given in [4]. An X-dynamorphism
$r:\left(X^{(} I, \omega_{I}\right) \rightarrow\left(Q, \delta^{\circ}\right)$ is called a reachable realizasion_of f in Dyn X if it is a mapping onto Q and f factorizes through r. It is called a minimal realization وf f in Dyn X if it is a reachable realization of f which factorizes through any reachable realization of f.
2. Proposition: Let X be a set functor, I be a set such that $X_{A} I$ does exist. Let there be no infinite unattainable cardinal of X smaller than or equal to card $X^{(}{ }^{+} I$. Then each mapping $f: X^{(+)} I \longrightarrow Y, Y$ is a set, has a minimal realization.

Proof. Put $y=$ card $x^{*} I$ and replace X by $X_{[\leqslant f]}$. Since $X_{[\leqslant y]}$ is finitary, each mapping $f:$ $: X \oplus I \longrightarrow I$ has a minimal realization in Dyn $X_{[a g e]}$, by [9], so in Dryn X .
3. Proposition: Let X be a set functor, N be its infinite unattainable cardinal. Let I be a set such that $X_{A} I$ does exist and card $X^{\infty} I \geq \mu$. Then there exists a mapping $f: X^{@} I \longrightarrow 2$ which has no minimal realization in Dryn X .

Proof. a) By [7], $X^{C} I=\bigcup_{\alpha<\lambda} x_{\propto} I$, where λ is
an ordinal. There exists $\alpha<\lambda$ such that card $X_{\alpha} I \geq$ $\geq \nless \quad$ (otherwise the process could not stop at λ because card $X_{*} \gg \psi_{k}$, see [6]). Let γ be the smallest ordial such that card $X_{\gamma} I \geq \neq$. Then
$\operatorname{card}\left(X_{\gamma+1} I \backslash X_{\gamma} I\right)=\operatorname{card}\left(X X_{\gamma} I \backslash \underset{\beta<\gamma}{\cup} X X_{\beta} I\right)>H$, see [6]. Choose a set P with card $P=w$ and a point a not in P and such that the sets $X_{\gamma} I, P \cup\{a\}$, $(P \cup\{a\}) \times\{0,1\}$ are disjoint. Put

$$
Q=X_{\gamma} I \cup(P \cup\{a\}) \times\{0,1\}
$$

b) Denote by \mathbb{F} the set of all non-empty finite subsets of P. If $F \in F \quad$ put $Q_{F}=X_{\gamma} I \cup F \cup((P \backslash F) \cup$ $\cup\{a\}) \times\{0,1\}, g_{F}: Q \longrightarrow Q_{F}$ is the mapping given by $g_{F}((p, i))=p$ whenever $p \in F, i=0,1, g_{F}(q)=q$ otherwise. If $F \in F^{\prime} \in \mathbb{F}$ denote by $\mathcal{B}_{F},: Q_{F} \longrightarrow Q_{F}$ the mapping such that $\mathrm{g}_{\mathrm{F}^{\prime}}=\mathrm{g}_{\mathrm{F}}{ }^{\prime} \cdot \mathrm{g}_{\mathrm{F}}$. We recall that P_{X} is defined as. $P_{X}=X P \backslash \underbrace{}_{R=P} X R$. Since card $P=4$ and card $R<\operatorname{card} P$
this is an unattainable cardinal of X, we have $P_{X} \neq \varnothing$. Let $v_{0}, v_{1}: P \longrightarrow Q$ be the mappings given by $v_{i}(p)=$ $=(p, i)$. Put $A^{i}=\left(X v_{i}\right) P_{X}, A_{F}^{i}=\left(X\left(g_{F} \circ \mathbf{v}_{i}\right)\right) P_{X}$. Thus, if $F \in F^{\prime} \in F$, then $A_{F}^{i}=\left(X g_{F}^{F} \cdot\right) A_{F}^{i}$. Since $g_{F}\left(\nabla_{0}(P)\right) \cap$ $\cap g_{F}\left(v_{1}(P)\right)$ is finite, we have $A_{F}^{0} \cap A_{F}^{1}=\emptyset$. Put

$$
B^{i}=\bigcup_{F \in \mathbb{F}}\left(X g_{F}\right)^{-1} A_{F}^{i}, \quad B_{F}^{i}=\underset{\substack{F^{\prime} \\ F^{\prime} \supset F}}{\bigcup_{F}}\left(X q_{F}^{F}\right)^{-1} A_{F^{\prime}}^{i} .
$$

Then $B^{0} \cap B^{l}=\varnothing, B_{F}^{0} \cap B_{F}^{l}=\varnothing$. Since X preserves inelusions, we have $X X_{\gamma} I \subset X Q$ and $X X_{\gamma} I \subset X_{F}$. Since $X_{\gamma} I \cap g_{F}\left(v_{0}(P)\right)$ is finite (it is empty!), we have $X X X_{\gamma} I \cap$ $\cap A_{F}^{i}=\varnothing$ for all $F \in F$, so $X_{\gamma} \operatorname{I} \cap B^{i}=\varnothing$ for $i=$ $=0,1$. We define

$$
\sigma: X Q \rightarrow Q
$$

as follows:

$$
\begin{aligned}
& \delta^{\prime}(z)=\omega_{I}(z) \text { whenever } z \in \underset{\beta<\gamma}{\cup} X X_{\beta} I, \\
& \delta^{\sim} \text { maps } X X_{\gamma} I \backslash \underset{\beta<\gamma}{\cup} X X_{\beta} I \text { onto } Q \text { (arbitrarily), } \\
& \delta^{\sim}(z)=(a, 1) \text { whenever } z \in B^{l}, \\
& \sigma^{\prime}(z)=(a, 0) \text { whenever } z \in X Q \backslash\left(X X_{\gamma} I \cup B^{l}\right) .
\end{aligned}
$$

Thus, (Q, δ) is an X-dynamics.
c) We have $X_{0} I=I \times\{0\} \subset X_{\gamma} I \subset Q$. Define a mapping $g_{0}: I \rightarrow Q$ by $g_{0}(x)=(x, 0)$. Let
$g:\left(X \oplus I, \omega_{I}\right) \longrightarrow\left(Q, \delta^{\sim}\right)$ be the X-dynamorphism such that $g \circ \eta_{I}=g_{0}$. We show that g is a mapping onto Q. Since $g(y)=y$ for all $y \in X_{0} I$ and $\sigma^{\prime}(z)=\omega_{I}(z)$ whenever $z \in \cup_{\beta<\gamma} X X_{\beta} I$, we have $g(y)=y$ for all $y \in$ $\varepsilon X_{\gamma} I$. Since $\delta \sigma^{\sigma}$ maps $X_{\gamma} I$ onto Q, g maps $X_{\gamma+1} I$ onto Q, so it maps $X^{\infty} I$ onto Q.
d) Let $h: Q \longrightarrow 2$ be the mapping such that $h((a, 1))=1, h(q)=0$ otherwise. Define $f: X^{\oplus} I \longrightarrow$ $\longrightarrow 2$ by $f=h \circ g$. We show that f has no minimal
realization in Dyn X. By c), g is a reachable realization of f. First, we show that, for each $F \in \mathbb{F}, g_{F} \cdot g$ is a reachable realization of f. Clearly, h factorizes through g_{F}, so factorizes through $g_{F} \cdot g$ and this is a mapping onto Q_{F}. Hence, it is sufficient to find σ_{F} : $: X Q_{F} \rightarrow Q_{V}$ such that $g_{\Gamma}, \sigma^{\circ}=\sigma_{F} \circ\left(X g_{F}\right)$. Put $\delta_{F}(z)=$ $\left.=g_{F} \circ d z\right)$ whenever $z \in X X_{\gamma} I, \delta_{F}^{\sim}(z)=(a, 1)$ whenever $z \in B_{F}^{1}, \quad r_{F}(z)=(a, 0)$ otherwise.
e) Let us suppose that f has a minimal realization in Dyn X, say $\left.t:(X) I, \omega_{I}\right) \longrightarrow(R, \rho)$. Since t factorizes through each $g_{F} \cdot g, F \in \mathcal{F}$, it factorizes through the mapping $k \bullet g$, where $k: Q \rightarrow X_{\gamma} I \cup P \cup$ $\cup\{(a, 0),(a, 1)\}$ is defined by $k((p, i))=p$ whenever $p \in P, i=0,1, k(z)=z$ otherwise. Choose $q \in P_{X}$ and pat $q_{i}=\left(X v_{i}\right)(q) \in A^{i}$. Find $p_{i} \in X x^{@} I$ so that $q_{i}=$ $=\left(X_{g}\right)\left(p_{i}\right)$. We have $(x(k \circ g))\left(p_{0}\right)=\left(x_{k}\right)\left(q_{0}\right)=$ $=\left(x\left(k \circ v_{0}\right)\right)(q)=\left(X\left(k \circ v_{1}\right)\right)(q)=\left(X_{k}\right)\left(q_{1}\right)=$ $=(X(k \circ g))\left(p_{1}\right)$, so $(\rho \cdot X t)\left(p_{0}\right)=(\rho \circ X t)\left(p_{1}\right)$. On the other hand, $\delta^{\nu}\left(q_{0}\right)=(a, 0), \sigma^{\sim} q_{1}=(a, 1)$ and $h((a, 0)) \neq h((a, 1))$, so $\left(t \circ \omega_{I}\right)\left(p_{n}\right)$ and $\left(t \circ \omega_{I}\right)\left(p_{1}\right)$ must be distinct, which is a contradiction.
4. Denote by N the set of all positive integers.

Theorem. Let X be a set functor, ψ, \mathcal{H} be cardinals such that $0 \leq \mu<\mu \geq x_{0}$. The following statements are equivalent.
(I_{*}) For each set I with card $I<\mu$ there exfists $\mathbb{X}_{A} I$ and each mapping $f: X(\mathbb{X} \rightarrow Y, Y$ arbitrarylg, has a minimal realization in Dy fyn X.
(2μ) For each set I with $\mu \leq$ card $I<\mu$ there exists $X_{A} I$ and each mapping $f: X^{\circledR} I \longrightarrow 2$ has a minimail realization in Dun X.
$\left(3_{\mu}\right) \quad x_{[<q]} \quad$ is finitary, where $y=\max (\mu, \psi)$, y^{\prime} is the smallest cardinal greater than $\sup _{n \in N}$ card X_{n}.

Proof. Clearly, $\left(1_{\mu}\right) \Longrightarrow\left(2_{\mu}\right)$. The implication $\left(3_{\mu}\right) \Longrightarrow\left(1_{\mu}\right)$ follows from 2 and Lemma A below, the implication non $\left(3_{\mu}\right) \Longrightarrow$ non $\left(2_{\mu}\right)$ follows from 2 and Lemma B below.
5. Lemma A: Let $X_{[<\gamma]}$ be finitary. If I is a set with $0<$ card $I<\mu$, then $X_{A} I$ exists and card $X^{@} I<$ < 友

Proof. Put $r=$ (card $I \times \sup _{\mathrm{m}}^{\mathrm{N}}$ (ard Xn$)+t_{0}$.
 card XI $\leqslant \mathrm{r} \leqslant \mathrm{g}$. Suppose $y>\boldsymbol{x}_{0}$. (The case $y=\boldsymbol{w}_{0}$ is easy, see [6].) Since $X_{[\ll]}$ is finitary, card $X Q \in$ $\leq r$ whenever $0<$ card $Q \leq r$. We may prove by induction that card $X_{n} I \leqslant r$ for all $n \in N$, so card $X_{\omega_{0}} I \leqslant r<$ $<g$. Since $X_{[<y]}$ is finitary, the process stops at $\mathrm{X}_{\omega_{0}} \mathrm{I}$.

> Lemma B: Let r be an unattainable cardinal of X such that $5_{0} \leqslant r<g$. Then there exists a set I with $w \leq \operatorname{card} I<\mu$ and card $X_{\omega_{0}} I \geq r$.
> Proof. a) Let $g=\mu \geq g$. Then $w_{0} \leqslant r<\mu:$ Choose I with card $I=\max (r, W)$ and use $I \times\{0\}=X_{0} I c$ c $\mathrm{X}_{\omega_{0}} \mathrm{I}$.
> b) Let $g=g^{\prime}>\mu$. Put $s=\sup _{n \in N}$ card Xn . Then $X_{0} \leq r \leq s$.
> $\propto)$ If $\psi_{0} \leqslant r<s$, then there exists $n \in N$ such that card $X_{n} \geq r$. Put $I=\max (n$, w $)$. Then card $X_{\omega_{0}} I \geq r$.
B) If $H_{0}<r=s$, then there exists $n \in N$ such that card $\mathrm{Xn} \geq \boldsymbol{N}_{0}$.

Then card $X_{2} n \geq$ card $X X n \geq r$. Put $I=\max (n, m)$.
$\gamma)$ Let $\psi_{0}=r=s$. If $n>$ card $X n$ for some $n \in N$, then, by [6], X is constant on $\{1,2, \ldots, n-1\}$. Since $\sup _{N}$ card $X n=火_{0}$, there exists $k \in N$ such that card $X_{n} \geq n$ for all $n=k, k+1$, Choose $I=$ $=\max (k, \mu<)$. Then card $X_{0} I=I$ and, by induction, card $X_{n} I \geq$ card $X X_{n-I} I \geq I+n$, so card $X_{a_{0}} I \geq N_{0}=r$.
6. Denote by C_{M} a constant set functor, i. e. $C_{M} Q=M$ for each set $Q, C_{M} f$ is the identity for any
mapping f. If X is a set functor, put

$$
x^{1}=x, \quad x^{n+1}=x x^{n} .
$$

If X, X^{\prime} are set functors, then their coproduct is denoted by $X \vee X^{\prime}$

Theorem. Let X be a set functor. Let an n in N be given. The following assertions are equivalent.
(4_{n}) For each set I with card $I \leqslant n$ there existe $X_{A} I$ and each mapping $f: X @ I, Y$ arbitrarily, has a minimal realization in Dhy X.
$\left(5_{n}\right)$ There exists $X_{A} n$ and each mapping $f: X^{\circledR} n \rightarrow$ $\rightarrow 2$ has a minimal realization in Dyn X.
$\left(6_{n}\right) X_{[\leqslant q]}$ is finitary, where
$q=\sup _{\boldsymbol{m} \in \mathrm{N}} \operatorname{card}\left(C_{n} \vee X\right)^{k} n$.
Proof. $\left(\sigma_{n}\right) \Longrightarrow\left(4_{n}\right):$ Clearly, card $X_{k} I=$
$=\operatorname{card}\left(C_{n} \vee X\right)^{k} I$ for all $k \in N$ whenever card $I=n$. Hence, card $X_{\omega_{0}} I \leqslant q$ whenever card $I \leqslant n$. Since $X_{[\leqslant q]}$ is finitary, $X_{A} I$ there exists and $X^{\circledR} I:$ $=X_{\omega_{0}} I$. Then use 2 .
$\left(4_{n}\right) \Longrightarrow\left(5_{n}\right)$ is evident.
non $\left(\sigma_{n}\right) \Longrightarrow$ non $\left(5_{n}\right)$: Since $X_{[\leqslant \ell]}$ is not finitary, there exists an unattainable cardinal r of X such that $x_{0} \leqslant r \leqslant q$. We have card $X_{k} n=\operatorname{card}\left(c_{n} \vee x\right)^{k} n$, so card $X_{\omega_{0}} n \geqslant r$, hence card $X^{@} r_{1}$, whenever $X_{A} n$ exists,
is greater than or equal to \mathbf{r}. Now, use 3.
7. Theorem. Let X be a set functor such that

```
card X l < card X 2.
```

Then all the statements $\left(1_{\alpha_{0}}\right)-\left(3_{\infty}\right),\left(4_{1}\right)-\left(6_{1}\right)$ are equivalent.

Proof. If $\mathcal{K}_{0}>$ card $X 2>$ card $X 1$, then, by [6], card $X(n+1)>$ card $X n$ for all $n \in N$. Hence, $s=\sup _{n \in N}$ card $X n \geq H_{0}$, so $X_{[<g]}=X_{[\leqslant s]}$.
$\left(3_{\aleph_{0}}\right) \Longrightarrow\left(4_{1}\right):$ Let us suppose that $X_{[\leqslant 〕}$ is finitary. Then use 5 A and 2 for $I=1$.
$\left(6_{1}\right) \Longrightarrow\left(3+{ }_{0}\right):$ We recall that ,
$q=\sup _{n} N^{\operatorname{card}}\left(C_{1} \vee X\right)^{n} I$.
It is sufficient to prove that $q \geq s$.
a) First, we show that card $X_{n} 1 \geq \operatorname{card} X X_{n-1} 1$ for all $n \in N$. Clearly, card $X_{1} 1 \geq$ card $X X_{0} 1$. Now, by the induction hypothesis, card $X_{n} 1 \geq$ card $X X_{n-1} 1$, hence card $X_{n+1} 1 \geq$ card $X X_{n} 1$.
 It is easy to prove it by induction because the following statement is fulfilled (see [6]): if card X $2>$ card X 1 , then $X Q \subset X Q^{\circ}$ whenever $\varnothing \neq Q \propto Q^{\circ}$ 。
c) Now, we prove by induction that card $X_{n} I \geq n$. Clearly, card $X_{1} \geq 1$; by b) and the inclusion hypothesis $X X_{n} 1 \backslash X X_{n-1} 1 \neq \varnothing$ and card $X_{n} 1 \geq n$, so card $X_{n+1} 1 \geq$ $\geq \mathrm{n}+1$.
d) Finally, we show card $X_{n+1} 1 \geq$ card X_{n}. Since card $X_{n} 1 \geq$ card $X X_{n-1} 1$, we have card $X_{n+1} 1 \geq$ card $X X_{n} 1$. Since card $X_{n} 1 \geq n$, card $X_{n+1} 1 \geq$ card X_{n}.
8. Now, we give an easy, but very simple condition for the validity of $\left(1_{x_{0}}\right)-\left(6_{1}\right)$ for some special set functors.

Proposition. Let X be a set functor such that card $X 2>$ card $X 1$ and, for any $n \in N, X n$ is finite. Then all the statements $\left(1+k_{0}\right)-\left(3 *_{0}\right),\left(4_{1}\right)-\left(6_{1}\right)$ are equivalent to
(7)

$$
\text { card } X x_{0} \leq x_{0}
$$

Proof. If card $X 2>$ card $X 1$ and all $X n$ are finite, then $s=\sup _{n \in N}$ card $X n=\kappa_{0} . \quad X_{[\in \infty]}$ is finitary iff s is not an unattainable cardinal of X. If s is an unattainable cardinal of X, then card $X s>\kappa_{0}$, by [6]. If it is not, then $X s=\bigcup_{n \in N} X n=w_{0}$. Thus, ($3 x_{0}$) is equivalent to (7).
9. Remark. In a draft of his book Algeoraic Theories, E.G. Manes put the question whether there exists an input process X ($=X_{A} I$ does exist for any I) in Set such that for some finite sets I, Y there exists $f: X^{\top} I \longrightarrow$ $\rightarrow Y$ which has no minimal realization in Dyn X. By 8, the functors $X=\beta_{\left[\leq *_{0}\right]}$ or $X=\mathbb{N}_{\left[\leq *_{0}\right]}$ (the functors β, \mathbb{N} are described, for example, in [8]) are
such input processes (small functors are input processes, see [7]). Another example is the functor $X=H 0 m\left(w_{0},-\right)$. Here, card $\mathrm{X}_{1}=1$, card $\mathrm{X}_{2}=2^{*} 0$ and $\sup _{n \in} \operatorname{card} X n=2^{*} 0$, while $*_{0}$ is an unattainable cardinal of X. By 7, there exists a mapping $f: X+$ $\longrightarrow 2$ which has no minimal realization in Dyn X.

By 4 and 6, one can prove easily the following assertion: for any cardinal $\mathcal{\sim}>1$ there exists an input process X such that, for each set I, card $I<\mu$ iff each mapping $f: X{ }^{\oplus} I \longrightarrow 2$ has a minimal realization in Dyn X.
10. In the present note, we restrict ourselves to the category Set only. But analogous results are true, for example, in the category Vect of all vector spaces (oper a field R) and all linear mappings. Here, we consider additive endo-functors $X: V e c t \longrightarrow$ Vect only. The presented theorems remain true for vector spaces if we write dim instead of card (also in the definition of $X_{[<m]}$) and R instead of 2 . The proofs may be modified such that we take, roughly speaking, suitable bases of vector spaces considered or, conversely, required vector spaces are defined as linear envelopes of suitable sets and, analogously, for mappings. (Certainly, other easy modifications are also necessary, for example the set $2=\{0,1\}$ is considered as a subset of the field R, constant functors are not additive, but they may be used for the defi-
nition of q and so on.)

References:

[1] J. ADAMEK: Free algebras and automata realization in the language of categories, Comment.Math.Univ. Carolinae 15(1974),589-602.
[2] J. ADAMEK: Realization theory for automata in categories, to appear.
[3] J. ADAMEK, V. KOUBEK, V. POHLOVA: The colimits in the generalized algebraic categories, Acta Univ.Carolinae 13(1972),29-40.
[4] A. ARBIB, E.G. MANES: A categorist's view of automata and systems, Category Theory applied to Computation and Control, Proceedings of the First International Symposium, Amherst, Massachussetts 1974,62-78.
[5] M. BARR: Right exact functors, J.of Pure and Applied Algebra 4(1974),1-
[6] V. KOUBEK: Set functors, Comment.Math.Univ.Carolinae 12(1971),175-195.
[7] V. KURKOVA-POHLOVA, V. KOUBEK: when a generalized algebraic category is monadic, Comment. Math.Univ. Carolinae 15(1974), 577-587,
[8] V. TRNKOVA: On descriptive classification of set functors I, Comment.Math.Univ.Carolinae 12(1971), 143-174.
[9] V. TRNKOVA: On minimal realizations of behavior maps in categorial automata theory, Comment. Math. Univ.Carolinae 15(1974),555-566.

Matematicko-fyzikalnf fakulta
 Karlova universita
 Sokolovská 83, 18600 Praha 8
 Ceskoslovensko

(Oblatum 15.11.1974)

