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PRERADICALS AND CHANGE OF RINGS

L. BICAN, P, JAMBOR, T. KEPKA and P. NEMEC, Praha

Abstract: This paper investigates the problem of lift-
ing preradicals under change of rings. The first part deter-
mines the relationship between the preradicals for R-modh~
les and S-modules provided that there is given a ring homo-
morphism f: R—>S ., In particular, there is given a full
description of this relationship in case that f is either
onto or ker £ 1is a ring direct summand of R . The final
part of the paper establishes a one~to-one correspondence
between the preradicals of Morita equivalent rings and this
correspondence preserves all the elementary properties of
preradicals.

Key words: Preradical, ring homomorphism, Morita equi-
valence.

AMS: 18E40 Ref. Z.: 2.726.4

The origin of this paper reaches back to (51, where the
lifting of idempotent radicals under suitable change of rings
was investigated. We decided to study the problem in a grea-
ter scope with respect to the general theory of preradicals.
Throughout this paper, a ring stands for an associative ring
with identity. Let R be a ring. A preradical r for the
category of left R-modules, R-mod , is a subfunctor of iden-
tity. Suppose that Me R-mod is chosen arbitrarily and N &
€ M 1is a submodule. The preradical r 1is said to be either

idempotent or a radical or hereditary or cohereditary if
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r(r(M)) = r(M) or r(Wr(M) =0 or r(N) =NONr{M) or

r(M/N) = (r(M) + NJ/N , respectively, for all M € R-mod and
every submodule N of M . We shall say that T, ={M|Me
e R-mod, r(M)

u

M} is r-torsion class and F, ={M |M e
€ R-mod, r(M) =0} is r-torsion free class. If every R~
module ( R-injective, R-projective) M splits ¥in r (i.e.
r(M) is a direct summand of M) then r 1is said to be
splitting (stable, costable). The zero and the identity pre-
radicals will be denoted by zer and id , respectively. Let
r and t be two preradicals for R-mod. Then we can define
the preradicals rot and rat by ro t(M) =r(t(m))
and ra t(M) /oM =tm/ r(M) .

Further, rct if r(M) € t(M) , for every M e R-mod. Com~
sequently, if {ri} s, 1€ I, is a family of preradicals for
R-mod we can define the preradicals /) ry and b ry by
(N )M =N rym) and ( )M = (M) . The
idempotent core (radical closure) T(T¥) of the preradical r
is the largest idempotent prerndicel (the least radical) con-
tained in r (containing r) defined as follows.

For all Me€ R-mod , put F(M) = = N(F(M) = M N) , whe-
re N runs through ell the submodules N of M with NeT,
((M/N)e F) . In a due course we can define the hereditary
closure (cohereditary core) of r by h(r)(M) =M N r(EM])
(ch(r)(M) = r(R). M) , where E(M) is the injective hull of
M . If the ring R 1is a ring direct sum o® its subrings Ry ,
i =1,2, we shall denote it by R = E; + R, to distinguish
it from the direct sum as submodules. We shall frequently use

the following assertibn. If I€ R 1is a two sided ideal then
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R/I 1is a flat right R-module iff x € I.x , for each xe I .
The technicalities about preradicals which are prerequisite
for this paper can be found scattered elsewhere. In particu-
lar, a systematical treatment of preradicals is presented in
£11,021,031,[41. As for the notation and the definitions we re-=
fer to [6]. In what follows we shall frequently deal with dif-
ferent rings and therefore we are going to distinguish the ‘mo-
dules over them. Namely, the symbols for the modules will be
supplied with an index denoting the generating ring. Let f:

¢t R—>S be a ring homomorphism. Then every SM € S-mod is
naturally an R-module in the structure defined by r.m = f(r).
.m . We shall denote it by R(SM) « If Ac R-mod then AN S-
mod is the class of all rRM e A which can be viewed as S-mo-
dules g such that R(SM) has the same R-module structure
as gpM . Finally, the R-homomorphism RM:—»S @RM given by
mi—>1@® m ‘will be denoted by Jy ¢ The last section of the
paper enables us to establish p-equivalence of rings which
seems to be the desired tool for structural classification of

rings.

2% Lifting of preradjicals. ILet f£: R—> S be a ring ho-

momorphism and r be a preradical fa R-mode For all M e S-
mod we define £ [r](M) = Sr(RM) and £{ir} (M) ={m|me r(RM)
and am € r(RM) for all ae S} .

2.1. Proposition. (i) f£[r] and f4r} are preradi-
cals for S-mod and fi{rtecf(rl .

(ii) Trn S~-mod = Tf'lr‘ and Fr'\ S-mod = Ff[r] .

(111) Ir r 4s either idempotent or cohereditary then f (r]
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is so, respectively.

(1v) If r 1is either a radical or hereditary then f{r} is
80, Teap.

(v) firtg £{F} and f£(Fle £lrl .

(vi) FiTicr4¥} end £CFls flrl.

(vii) £ lch(r)leg chlelrl) .

(viii) If the left R-module S is projective, then
£Lehlr)l =ch(rlrl) .

(ix) n(f{r3})s ri{n(r)} .
Proof. (i) and (ii) are obvious.

(1ii) Let r be idempotent. Then r(f({r] (M) =
= r(Sr(gi)) = r(gM) , and consequently f[r] is idempotent.
Now, if r is cohereditary and N& M is an S-submodule,

then Sr(((M/n)) = (Sr +N)/N=(elr]l (M) + N)/N.
R i

(iv) Similerly as for (iii).

(v) and (vi) follow by (ii), (iii) and_(iv).

(vii) and (viii) by (iii) and (ix) by (iv).

The following two propositions are purely of technical

character and hence the proofs are omitted,

2.2. Proposition. The operator r i—»fir} preserves
the intersection of preradicals and the operator rp—af[{r]

preserves the sum.

2.3. Proposition. Let r and 8 be two preradicals for
R-mod. Then
(1) P4{ryo f4i{stc f{ro syt & rflrosle firlorls].
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(11) r{rla ri{sicrt{rasictlraslctlirlafis]l.
(131) FITTA A8t =Firo st =f4iriofisl = fTirn si.

m/
(1v) F(r] +fCe] =flrasl=flrlaflsl=flrvs].

(v) If r 1is hereditery then firoc s}=f{rto fis} .
(vi) If r 1is cohereditery then f{(s arl=fl(slarirl.

2.4. Definition. The ring homomorphism f 4s called de-
lightful, if f£(rl =f4r} for every preradical r on R~

mod.

2.5, Proposition. If the ring homomorphism £ satisfies
at least one of the following conditions, then it is delight-
ful.

(1) £ 4s en onto homomorphism.

(ii) The ring S 1is commutative.

(111) Im £ 4s contained in the center of S .

(iv) The R-bimodule S is isomorphic to a free R-module.
(v) There is a set X is generators of the R=-module S such

that f(a)x = xf(a) for all x€ X and a €R .

Proof. As it 1s easy to see, we may consider only ti’le
fifth condition. With respect to the hypothesia, the map
mr—>» xm is an R-endomorphism of RM for all xe X and
M € S-mod . Hence xr(Rl) 3 r(RM) , and consequently
yr(Bl) c r(RM) for every y € S since X 1s a set of gene~
rators of S . Thus r(gM) d4s an S-submodule of M .

The following two propositions follow immediately from
2.1 and 2.2,
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2.6, Proposition. Let s be a preradical for S-mod and

be the class of all the preradicals r for R-mod with
£4{r} =s(f{rl = a) . Suppose that A(B)

A(B)

is non-empty. Then

(1) ry =;;QAI' (ry =‘§Br) is the least (largest) element
in A(BY .

(11) If s 4is idempotent (a radical) and r e A (r e B) then

TeA (TeB).

(111) If s 4is idempotent (a radical) then rg 1s idempo-

tent ( r) is a radicsl).

(iv) If s is cohereditary, gS 1s projective and r e B
then chi(r)e B .

2.7. Proposition. Let s be a radical (an idempotent pre-
radical) for S-mod and C(D) be the class of all the radi-
cals (idempotent preradicals) r for R-mod with f4{ri=
= g(f {rd =38) . Suppose that C(D) is non-empty. Then

0 _ 1
(1) r —wf;\cr (r =n-§l)r) is the least (largest) element
in c(D) . ’

(44) If s is idempotent (a radical) then © (r1) is an
idempotent radical.

(1i1) If s is idempotent (a radical) and re C (r € D) then
TeC (TeDd.

2.8, Proposition. Let r be a prerndical for R-mod and
8 be a preradical for S-mod. For all Me R-mod define
(s1fM) ={m|meM and 1@ me s(SSRGRM)} . Then
(1) [sl r 4is o prerandical for R-mod and f[[s]lf]l & s .
(11) r €(flrllf and PLrl=e[(Crlrl1ler]
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(111) (sl =[rlls)rll?r .

Proof. (i) 1is obvious.
(11) J.(r(nl)) s J‘(Rn)n £ [r] (S@RI) , and so
r(RI) sfrlirll f(xl) .

Since rel(ffrlle , e (rlce((rlrllLlseir].

(i11) . is clear by (1) .

2.9, Propgsition. Let r be a preradical for R-mod
and s be a preradical for S-mod. For all Me R-mod defi-
ne {s} (M) ={m|meM and m = p(l) for some
Pe s(HomR(nfss y gM))¥ + Then

(1) 4{si{f is a preradical for R-mod and s = f{is}f}.
(i1) $£4rit £ r and fL{r}=L{{r{ri} £}.
(131) { &t f ={L {{aY L3tr .

Proof. The proof runs without principal difficulties.

2.10. Ppropositiopn. Let s and t be two preradicals
for S-mod. Then
(1) [slfoltlfclsotlr.
(i1) If the right R-module Sgp 1s flat and s 1is heredi-
tary, then [s]l foltlf =[so tlf.
(111) [(slrfaltlrslsa tle.
(ivl] {so t}fcistfostir.
(v) {sntiftc {straftyr .
(vi) If the left R-module rS 1is projective and ¢ is co~-
hefeditary, then {sa t} £ =48t ot .

Proof. (i) Let Me R-mod and N =[t]f£(M) . If
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n elslf(N) then 1® ne s(t(SGRI)) .

(11) follows from (i),
(111) Let N = [s]l £(M) . The assertion is an easy con=-

sequence of the following commutative diagram with exact rows

0O—>» N ———-i—-—q-’ M — 9 o MN—e0
In Iy du/n
1®a4 1®

q
S®f —m>» SOM ———»SEMW/N—0

< | -

(s@M)/s(S® M)

where q, w and 2z are natural.

The proofs of (iv),(v) and (vi) are almost dual to those
of (1),(41) and (iii), respectively.

2.11. Corollary. (i) If s is a3 radical then [a]l f is
S0.

(11) 1F Sp is flat and 8 is hereditary then [s]l f is
hereditary.
(4111) If s is idempotent then {s} £ is so.

(1v) 1 gS 1s projective and s is cohereditary then
{8} £ 1is cohereditary.

Proof. (1) By 2.10(411),[slrtalslrtclsa sl f=[slr .
(11) By 2.10 (ii), [s] £ is idempotent. Further, [s] £ -tor-
sion modules are closed under submodules, and so [s] f is he-
reditary.
€11i) and (iv) can be proved similarly.
The following proposition is clear.
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2.12. Proposit ion. The operator s —» [s8]f preserves
the intersection of preradicals and the operator 8 —> {s? f

preserves the sum.

2.13. Definjtion. The ring homomorphism f 1is called
codelightful, if (sl f = 48} £ for every preradical s on

S-mod.

2.14. Example. Let R be a subring in § and £ be
the canonical inclusion. Suppose that there is a set X =
=-§x1,..., xn3 € S such that X 1is a set of free generators
of S over R , the elements from X are orthogonal idempo-
tents and 1 = Zx; . Then f is delightful and codelightful.

2.15., Exgmple. The canonical embedding of integers into
rationgl numbers is delightful but not codelightful.

2.16. Problem. To say more about delightful and codelight-
ful homomorphisms, in particular, whether the imbedding of a
ring into the maximal quotient ring is delightful.

2,17. Propogition. If Sp 1is flat and r 1is a preradi-
cal for R-mod, then f{ h(r)} = h(ir{r}) .

Proof. Taking into account the flatness of SR we see that
every S-injective is R-injective, and hence the assertion

easily follows by 2.1 (ix) .

3. Onto ring homomorphisms. In the following f: R—»S

denotes an onto ring homomorphism. Further, for all M &€ R-mod

we define u(M) = Ker f.M and v(M) ={m|me M , Ker f.m = 03.
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3.1, mmm. Let r and t be two preradicals for
R-mod . Then the following are equivalent:

(1} rov=tov.
(11) fIirl=2£0t).
(i11) uar=uat.
.Proof. The proof needs only a tedious checking.

3.2. Ppopopition. Let r be a preradical far R-mod such
that Ker £ g r(R) . Then

(1) vaf=F¥=Fau,ugr and rau=r.

(11) £ Leh(F)) =ch(r [F)) .

(141) £[r] 4is a radical iff uAr is so. In such a
case, * =uar=rar.

(iv) If Ker £ is idempotent then £ [r] is idempotent
iff uar 4s so. In such a case, T is idempotent.

(v) £ [r) is cohereditary iff uar 1is so.

(vi) 1P Sg is flat then f(r] is hereditary iff uar
is so. In such a case, T 4is hereditary.

Proof. (4) and (11) are immediate; .
(1i11) If uo r is a radical then f{uarl=f[fulafir] =
=zeraf[r] =f£[r)] by 2.5 and 2.3(11), and we are ready to
use 2.1(iv). Conversely, if £ [r] is a radical, then there is
a rodical t for R-mod such that £ [t] =f[r] (see 2.7
(11)). It is easy to check that 3.1 ylelds uar =uat is
a radical . Further, since rsuarsua®™=%, F=uar
end F=r o T=raluar)=(rauvlar=rar.

(iv) We can proceed similarly as in (iii), using 2.1(iii).
(v) Use (111) and 2.1(111).

({vi) Observing 2.5 and 2.17 the result essily follows.
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The following proposition is dual to the preceding one and the
proof is left to the reader.

3.3, Proposition. Let r be preradical for R-mod such
that r & v . Then
(1) FTov=T=voT end vor=r.
(11) £ILh(F)] =n(e[Fl) .
(111) f£Cr] 1is idempotent iff r o v 1is so. In such a case,
F=rov=ror.
(iv) If Ker £ is idempotent, then f£({r] is a radicel iff
ro v is so. In such a case, T 1is a radical.
(v) £I[r) is hereditary iff ro v 1is so.
(vi) 1Ir gS 1s projective then f([rl is cohereditary iff
rO Vv is so. In this case, T ' is cohereditary, provided R
is left perfect.

3.4. Proposition.e Let r be & preradical for R-mod. Then

(1) If r 4is costable cohereditary then f[r) is so.

(i1) If r 1is a costable radical and Ker £ € r(R) then
fIr] is costable.

(413) 1r gS 1s projective and r is costable then' f£[r)
is so.

(iv) If r 1is stable hereditary then f£[r]) is so.

(v} If r 4is stable idempotent and Ker f.r(M) =0 for
all M ¢ R-mod then £ (r] 1is stsble.

(vi) If Sy 4s flat and r is stable then f[r]) is so.

(vii) If r 4is splitting then f[rl is so.

Proof. (1),(1ii) and (vi) are easy.
(11) follows by (i) and 3.2(ii).
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(iv] As one may verify, a hereditary preradical t is stable
iff INK=1L for some left ideal I# L whenever L& Ks R
are left ideals with K/L = t(R/L) . Now we can apply 2.5.

(v) follows by (iv) and 3.3(ii) and (vii) is obvious.

3+5. Proposition. Let r be a preradical for R-mod and
3 be a preradical faa S-mod. Then
(1) fs3 e v , 483 fo v=4s}f =vodislr.
(11) f{{s3f} =rlfsifl =8 and {8} £(M) =8 (;v(M)))
for all M e R-mod.
(111) 4{sl £ is idempotent (hereditary) iff s 1is so.
(iv) If Ker £ 1s a left direct summand then {s} f is co-
hereditary iff s is so. In such a case, {ch(s)} £ =
=ch({s8}r) .
(v) §53f =183t and h(4sif) ={h(s)}r .
(vi) If Xer £ is idempotent then {s$} £ 1is a radical iff
3 1is so. In such a case, {83 f = -{;\iJf .
(vii) {r{r33ft =4f[rl3f=rov.
(viii) If Sp 1is flat then fs} f is stable iff s is so.
(ix) ueslsie, [s—lfau=[s]f =ualslr .
(x) £Lls1fl=s and [s]£(MulM) = s(M/u(M)) for all
M € R-mod.
(xi) (s8] f 1is a radical (cohereditary) iff s is so.
(x1) [¥17 =fslf and ch([slf) =[ehls)lt .
(xiii) 1Ir i(er £ is idempotent then [s]f 1is idempotent
iff s 1is s8o. In such a case, [§]f = fsir .
(xiv) If Sp 4is flat then [s] £ 1is hereditary iff s is
so. In such a case, h{[slf) =[h(a)lf .
(xv) If Ker £ is a left direct summand then [s] f is co-
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stable iff s 1is so.
(xvi) [£lrllf =uor.
Proof. (i) and (ii) are evident.
(i11) Use (1),(ii) and 3.3(iii) and (v),.
(iv) By (1),(ii1) and 3.3(vi).
(v) According to (iii), {S¥f S w=4a}f and
h({s3f) =t S4n(s)3 r.
On the other hand, fIw)l=8 and fLtl= h(a) . Hence'

§53f =4s3fov=wov=4sifov=1s3f =w »nd
{h(s)j £ ={h(s)jfov=tavst.

(vi) By 3.3(iv).

(vii) With respect to (ii), £{{£4{r3i £} =4 r} and
therefore r o v ={fi{r}3}fov=4f4i{r3ir .

(viii) If {s} f is stable then s is stable by (ii)
and 3.4(vi).
Conversely, if s 1is stable then {s$ £ is stable by (ii)
since v 1is stable.
The remaining points of the proof are dual to some of those
preceding, respectively.

The following corollary is an easy consequence of 3.3 and

3.5.

3.6, Corollary. Let A be the class of all the preradi-
cals r for R-mod such that f[rl]l] =s . Then
(i) [8s1 £ is the largest element in A .
(i11) [slf =uar forall re 4.
(111} If s is a (cohereditary) radical then [s]l f is so.
(iv) If s is idempotent then (s1f « A .



(v) Ir s is an idempotent radical then [s]l f 1is so and

[3] fe A,
(vi) If R 4is left perfect and s is idempotent coheredita-

ry then (sl f is so snd (slfe A,
(vii) 483 £ 1s the least element in A .
(viii) {83 f =ro v forall reA.
(ix} If s 1is idempotent (hereditary) then {s} £ is so.
’ A~~~
(x) If s 4is a radical then fs3f e A .
P )
(x4) If s 1is an idempotent radical then {s¢ £ 1is so and
PNt
{s}fe r.
PN
(xii) If s 4s a hereditary radical then {s} f is so and

(l\i’feA.

4. Ring direct sums

4.1, Defipition® Let r be a preradical for R-mod. An
element ary property of r is any of the following:
(1) r is a redical.
(11) r 4is idempotent.
(141) r 4s hereditary.
(iv) r 1is cohereditary.
(v) r 4is stable.
(vi} r is costable.
(vii) r 4s splitting.
(viii) r =144d.
(ix) r = zer .
(x) r(R) =0 .
Further, the fitst seven elementary properties will be called

superelementary.
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4.2. Proposition. Let f£: R—»S be an onto ring homo-
morphigm, Ker £ be a ring direct summand in R , r be a
preradical for R-mod and s be a preradical for S-mod.

Then

(1) If r possesses an elementary property then f£[r] has
the same one,

(11) [s)f possesses a superelementary property iff s does
80. .
(1i1) {s3 £ possesses a superelementary property iff s does
80,

Proof. By 2.1(iii), (iv),3.4, and 3.5.

Let R=R) +R, % ...+ R be aring direct sum, p;:
R—>R, be the canonical projection and A = {(ry,..., r) | ry
is a preradical for Ri-mod 3. An element from A is-said to
have an elementary property if each of its components possesses
the same one. Further, the intersection, sum, inclusion and the

operators o , & can be defined on A 1in obvious manner.

4.3, Proposition. There is a one-to-one correspondence
between preradicals for R-mod and the class A given by

ro-—-»(pltr] geeesy pn[rJ ) and

(Pyyevey Pp) —> Ffryt py =M Irydpy
Moreover, this correspondence preserves all the elementary pro-
perties, intersections,sums, inclusions and the operators o ,

a .
Proof. The proposition can be verified directly but one

can also use the preceding theory for the convenience.
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5. Lifting of preradigals and Morita equivalent rings

5'1-‘2‘@119—’ We shall say that two rings R and S
are p—equiva.lent if there is a one-to=-one correspondence bet-
ween preradicals for R-mod and S-mod, preserving the opera-
tors o© and & , inclusions, sums and intersections of pre-

radicals and all the elementary properties, in both directions.

5.2 m. Morita equivalent rings are p-equiva-
lent, -

Proof. Let R and S be Morita equivalent rings, F: R-
mod —» S=mod and G: S—mod —s R-mod be 'the functors which
represent this categorical equivalence and f: GF—-»lR_md ’
g: FG—» ls-mod be the corresponding functorial isomorphism.
If » and s are preradicals for R-mod and S-mod , respec-
tively, for all M € R-mod and N € S-mod we define gr(N) =
= g(F(r(G(N)))) and ps(M) = £(G(s(F(M)))) . Then qr(gs) 1is
a preradical for S-mod (R-mod) and r = p(gr) , s = g(ge) -
The rest follows easily, using the fact that Gg = £G and
Ff = gF. '

5.3. Exagple. Any two skew-fields are p-equivalent. Thus
p-equivalent rings need not be Morita equivslent.

5.4. Remark. The preceding proposition enables us to show
trivially‘that many properties of rings which can be character-
ized by means of preradicals asre Morita invariant. For example,
the properties of a ring being QF-3 , semiartinian or with
trivial torsion parts for a given class of preradicals (CTF-
rings, ATF-rings) are Morita invariant.
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