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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
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EXTENSION OF SEQUENTIALLY CONTINUOUS MAPPINGS
Roman FRIE, Zilina

Abstract: A.D. Tajmanov proved in [T] a necessary and
sufficient condition for a continuous mapping of a dense sub—-
space of a Tl topological space into a compact Hausdorff spa-

ce to be continuously extended onto the whole space. ¥e prove
a similar result for convergence, resp. sequential, spaces.

Key words: Convergence space, sequential space, exten-
sion of a (sequentially) continuoﬁs mapping, sequenéially

complete convergence, resp. sequential, space.
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The reader is asked to refer for the background material
on closure spaces to [1], convergence spaces to [5], and se~
quential spaces to [2). The convergence of sequences in se-
quential spaces is briefly discussed in [3]. Throughout the
paper we shall always assume that a closure space has unique

sequential limits and hence it is a Tl space. We employvthe

symbol f: {P,u)l— (Q,v) to denote a continucus mapping of

a closure space (P,u) into a closure space (Q,v) o If

(Q,v) 1is a convergence spaee or a‘sequent@alfspace,‘then £

is continuous iff it is sequentially continuous. Recall (cf.
[4]1), that a closure space (P,u) is called sequentially re-

gular if the convergence of sequences in (P,u) is projecti-
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vely generated by C(P) , i.e. x = lim x, iff f(x) =

= 1im £(x,) for each f & C(P) . A sequentially regular
convergence, resp. sequential, space is called sequentially
complete if it is closed in each sequentially regular con-
vergence, resp. sequential, space in which it is C -embed-
ded. A sequentially regular convergence space (L,A) 1is a
sequential envelope of itself iff (L, A) is sequentially
complete 1).

OQur starting point is the above mentioned ’I‘a,jmanov‘s
result:

Theorem 1. Let X be a dense subset of a topological
space (P,u) and (Q,v) a compact topological space. Then
£: (X, uw/y) —>(Q,v) can be extended to F: (P,u) —> (Q,v)
iff the following condition is gatisfied:

(1) A, BecQ, vAn vB=¢ implies (uf*CA)} N
n (ur¥IBY =¢ .

Lemma 2. Let (P,u)l and (Q,v) be topological spaces.
Let f be a mapping of a subset X <« P into Q such that
the condition (1) is sstisfied. Then f: (X,w/y)—>(Q,v) .

The straightforward proof is omitted.

As a simple corollary of Lemma 2 in [6] we have

Lemma 3. Let (L,A) be a convergence space, X c L ,
and x ¢ ﬂ.”" X . Then there is a countable set S & X such ‘
that x e A®1s .,

Theorem 4. Let (L,A) be a convergence space, X ¢ L ’
AX=L, and (M,(a.) a sequentially complete sequentially

1) In [5) the term & -complete is used instead.
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regular convergence space. Let f: (‘x,alx)——»(m,(.u) . Then
f can be extended to F: (L,A) —— (M, ) 1iff the following
condition is satisfied:

(2) S , S, X, card Sy &4, , (£M205;1)n

w
nt@rs,1) =8 implies a1s; n A%, =0 .

Proof. (2) is necessary. If f: (L,a)—> (M, ) ,
f/yx = £ , then it follows from 16 B.4 in [1] that
Fi (L, A¥1) —> (M, (4,0") and (2) is obvious.

(2) is sufficient. Let @ Dbe the completely regular mo-
dification of @ , (Q,v} the Cech-Stone compactification of
(Myw) , and (Q,») the convergence space associated with
(Q,v) . From Theorem 11 in [5] it follows that w = »/y and
since (M,@} is sequentially complete, we have » M =M .
Plainly f£: (x,;./x)-——ﬂq,») and f: (X,2/,) —=(Q,v) .
Denote by P=L and u = A%, Using (2) and Lemma 3 it can
be easily proved that the condition (1) is satisfied. It fol~-
lows from Lemma 2 that f: (X,u/x)—> (Q,v) and hence, by
Theorem 1, f can be extended to f: (Pyul —>(Q,v) . From
35 C.9 in [1] it follows that f: (L,A)—>(Q,») . Since
£[X)cM and PM=M, we have FT[Llc M . Thus T:

: (LyA )—>= (M,) and the proof is finished.

Gorollary 5. Let (L, A%

ha“ X=L, and (M, (aa‘) a sequentially complete sequential~-

) be a sequential space, X c L,

ly regular sequential space. Then f: (X, a""/x)——-n (M, p.o“ )
can be extended to T: (L, ;\,Q“)——'»(M, @“") iff the condi-
tion (2) is satisfied.

Corollary 6. Let (L,A) be a convergence space, Xc L ,
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2% ¥ =1L, end Cjc C(L) . Then (X,4/y) , resp.
(%, a““/x) , can be C, - embedded into (L,2) , resp.
(L, 2%) , 1ff the following condition is satisfied:

(3) 83 ,Sc X, card S5 €K, , fL[S)1n £LS,] =
=@ for some f € C, implies A% S; n.a“’152 =g .
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