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COMMENTATIONES MATHEMATICAE OTIVERSITASIS CAROLINAE 

16,3 (1975) 

COMPLETE METACYCLIC GROUPS 

N.J. MUTIO, Nairobi 

Abstract: In this paper it is shown (Theorem 1) that un
der certain conditions the order of a metacyclic group G di
vides the order of its automorphism group. The main result is 
Theorem 3 which gives both necessary and sufficient conditions 
for a (nonabelian) metacyclic group to be complete. This ex
tends the known classes of finite groups G with the proper
ty that I G \ divides I Aut(G)) . 
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AMS: 20D45 Ref. 2.: 2.722.2 

The purpose of this paper is to extend the known classes 

of finite groups G where the order I G I of the group di

vides the order I Aut(G) I of its automorphism group Aut(G) • 

R. Davitt 123 has shown that if G is a noncyclic metacyclic 

p-group, p and odd prime, such that I G \ > p , then 

lGl|lAut(G)l . We shall show here that Davitt's result holds 

for certain metacyclic groups which are not necessarily p-

groups. Necessary and sufficient conditions for G to be com

plete will also be given. An arbitrary group G is called 

complete if its center Z(G) is trivial and its automorphism 

group equals Inn(G) , the group of its inner automorphisms. 

A group G is called metacyclic if it has a cyclic normal 
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subgroup A such that G/A is also cyclic. Let A » < a > 

with ( a I « m and G/A « < bA > with I bA I « s • Denote by 
—l v r the least positive integer for which b ab « a • Then 

(mfr) » lf r
s « 1 (mod m) f and if u is the (multiplica

tive) order of r mod m f then u | s • A metacyclic group G 

therefore has a presentation of the form 

G « < afb : a
m » 1 f b s » a* f b^ab » a*> 

and G is called split if t • 0 • We will refer to the inte

gers m f s f r f u and t as the usual parameters of G • 

The subgroup < b > will be denoted by B . 

We remark here that all our groups will be assumed to be splitf 

nonabelian and metacyclic so that t « 0 and r > 1 • 

For any x € G let & denote the innter automorphism of 

G determined by x • Using the above representation of G 

( G arbitrary metacyclic) it is easily shown that Z(G) « 

» <a m / a
fb

t t> f where d » (mfr - 1) , and 

Inn(G) » < &fb : t
m/a » 1 » bttf b^sb « §* > . 

Hence I Z(G)| • mu/d • I Xnn(G) 1 • 

Theorem 1. Let G be a metacyclic group with the usual 

parameters such that s * u • Then lGl|lAut(G)| • 

Proof: We construct a subgroup of Aut(G) of order 

mu « I G I • Por each integer j f 1 4s j £ m f define & (a<*): 

. Q — > Q by 

a".1) *(«*) - (b.-)- .1 - b - a d( - l t - i ) / ( - - i ) a i . 
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Then 

Kb-«1) tf(.J)3t(bV> K a J j J . b V ^ ' ^ i W 

(rw - l)/(r - l)0v 

= hfc+wJt*^*)/^--)«,-*"** 
« M a a . 

'a 

On the other handy. 

K b ^ K b Y ) ] rf(a*) . (bk+waiyW+v) tf (a*) 

. 0k+waj(r
k+w)/(r-l)air

w+v 

Hence 6*(â ) is a n endomorphism of G which fixes A ele

ment wise. 

Now suppose that (bka ) & (a^) s l for some positive inte

gers k and i . Then bka^(r -D/(r-Dai . x m since G is 

split this yields bk • 1 and consequently a « 1 f finally 

yielding b^a1 • 1 . Thus ^(a^) e Aut(G) for each j . 

Next we have that for any x and y in A f 

b(6T(x)6'(y)) « (ber(x))C(y) « (bx)<y(y) « b(xy) »b6*(xy) . 

Since a # (x) « a for every X€ A we conclude that 6T s 

5 A — > Aut(G) is a homomorphism into. But b6*(x) » b clear

ly implies that x « 1 • Hence & is a monomorphism. Further

more it is clear that G (A) « < & (a) > • 

We investigate < 6 (a) > n Inn(G) • So suppose that 

6» (a ) c Inn(G) for some i • Then (f(a ) is equivalent to 

conjugation by some power of a since it fixes A element-

wise. So let btf(a ) • ba.z for some integer z • Then 

b6 (a1) « baz(1"r) » b(8T(a1-r))2 , yielding 6T (a1) « 

« (eta1"*))2 . We conclude that 

<tf(a)>n Inn(G) « <6'(a1-r)> 
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and it is clear that \ < ff (a1"*)> \ « m/d . Since 

Inn(G)<3 Attt(G) we have <tf(a)> . Inn(G) is a subgroup of 

Attt(G) of order am » IGI and the theorem is proved. 

The following result asserts that under certain condi

tions G has no outer automorphisms. Let cp (x) be the Eu-

ler phi-f unction. 

Lemma 2. Let G be as in Theorem 1 suoh that the follo

wing hold s 

1. <y (m) • u ; 

2. A is characteristic in G ; 

3* B is conjugate to all its automorphic images. 

Then Inn(G) • Auit(G) . 

Proof i Since A is cyclic of order m we have that 

I Aut(A) I m eg (m) • On the other hand, the subgroup < Jt> of 

Aut(G) is of order tt and each-of its members restricts to 

an automorphism of A • Since $> (m) » tt we see that every 

automorphism of A is equivalent to conjugation of elements 

of A by some power of -> . So let (& e Aut(G) . Since A 

is characteristic in G t /S |A c Aut(A) f so that /3|A • &* 

for some integer k > 0 • On the other hand, since Bfi is 

oonjttgate to B f we have that for some integer i , 

1 £ 1 * a , B/3 « < b / 3 > « < a"ibai> « < baj1 > . Hence 
k 1 k _L 

•/S * ai an<* k/3 * *& • -ft follows that (& » & & € 

€ Inn(G) and the lemma is proved. 

We are now ready to give some necessary and sufficient 

conditions for a metacyclic group to be complete. This is 
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Theorem 3. Let G be as in Theorem 1. Then the follo

wing are equivalents 

1. G is complete* 

2. (i) d « (m.r - 1) « 1 t 

(ii) A is characteristic in G suoh that y (m) « 

u t 

(ili) B is conjugate to all its automorphic images* 

Proof i l«aa>2t G complete implies that Z(G) • 

« < a m / d
tb

u > « 1 t yielding d « 1 so that 2(i) holds. Next, 

G complete implies that all its automorphisms are inner of the 
k i k i 

form a & f°r positive integers k and i • Hence a ( p ) « 
k ~ 

» a € A • Hence every automorphism of G is an automorphism 

of A and A is characteristic in G • Furthermore* all the 

restrictions contribute exactly u distinct automorphisms of 

A t namely conjugations of elements of A by powers of b , 

But I Aut(A) I « y (m) and u | y (m) . Suppose u <* 9 (m) • 

tor each integer n t U n 4 i satisfying (ntm) » 1 • de

fine ocn* A — > A by aiocn « a
i n , U U i , Thon it is 

clear that oCn c Aut(A) and these are the only automorphisms 

of A t so that they are gp (m) in number* Since u «? yG&) t 

then there exists an integer nQ suoh that (n tm) « 1 and 

otn is not equivalent to conjugation by a power of b . How 

extend oe„ to an automorphism of G by defining bocn « 
"0 o 

« b • Then oc t as an automorphism of G , is not inner, 
0 

a contradiction since G is complete* Hence g> (m) « u • 

This completes the proof of 2(ii). Condition 2(iii) is obvio

us sinoe all automorphisms of G are inner. This completes 

the proof of 1 sss> 2. 
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2-sas>l* First of allt since G is split, b* • 1 t and 

since d « 1 by 2(i)t we have Z(G) « 1 • Secondly, by the 

lemma abovet conditions 2(ii) and 2(iii) imply that G has no 

outer automorphisms. This completes the proof. 

Let G be any finite group. A subset B of G is cal

led a T.I. set (trivial intersection set) if g e G implies 

that either g Bg » B or (g Bg) n B » 1 , A finite group 

G is called Probenius if it has a nontrivial proper subgroup 

H which is a self-normalizing T.I. set. The subgroup H is 

called a Probenius complement of G . If G is a Probenius 

group then it is well known that there exists another subgroup 

M t popularly known as the Probenius Kernel of G t and unique 

in G such that En M « 1 and (|HjtlMt) « 1 • A Probenius 

group is clearly split. 

Some Probenius groups are complete as shown in the follo

wing corollary to the above theorem. 

Corollary 4s Let G be a metacyclic Probenius group 

with Probenius complement < b > and order mu • If (mtr - 1) • 

• 1 , op (m) » u and < b > is a p-subgroup, then G is com

plete. 

Proofi Pirst note that G is split metacyclic. Second

ly! <a> is the Probenius kernel and is therefore characteris

tic, in G (£43» Corollary 17.5). Thirdly, since < b> is a 

p-subgroup such that (lbt9lal) • 1 t it follows that < b > is 

conjugate to all its automorphic images. Fourthly, since 

(mt r - 1) » 1 'and <f (m) » tt t all the conditions of (2) of 

Theorem 3 are satisfied and the corollary follows. 
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Remark. An infinite class of complete metacyclic groups 

is easily constructed as follows. For any prime p > 2 let 

6 be the group generated by a and b with defining rela

tions ap • 1 • b^"1 and b ab « ar , where 1 < r < p and 

the multiplicative order of r modulo p is p - 1 • Then 

G is metacyclic with A » < a > a characteristic subgroup. 

By Theorem 10.5 of [43 the subgroup B » < b > is conjugate 

to its automorphic images. Hence G is complete by Theorem 3 

above. 

Observe that S-, , the symmetric group on three letters be

longs to this class. 

R e f e r e n c e s 

fl] C. CURTIS and I. REINER: Representations of Finite Groups 

and Associative Algebras, Interscience, New York, 

1966. 

[21 R. DAVITT: The automorphism group of a finite metacyclic 

p-group, Proc. .Amer. Math. Soc. 25(1970),876-879. 

t3] R» DAVITT and A. OTTO: 0 n the automorphism group of a fi
nite p-group with the central quotient metacyclic, 
Proc. Amer. Math. Soc. 30(1971),467-472. 

£4] D. PASSMAN: Permutation Groups, W.A. Benjamin, Inc., New 

York, 1968. 

Kenyatta University College 

Nairobi 

Kenya 

(Oblatum 6.2.1965) 

547 -


		webmaster@dml.cz
	2012-04-27T23:31:14+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




