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REAL CLASSES IN THE ULTRAPOWER OF HEREDITARILY PINITE 3ETS

A. SOCHOR, Praha

Abstract: For every non-standard n* we construct F
such tThat In the ultrapower of the set of all hereditarily
finite sets it holds: " P 1is a function from n* into a
cofinal part of On and for every set =x the intersection
Pnx 1a g set."
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The model of all hereditarily finite gets (¢ =
=<V, EMVy) ) 1s a model of ZF set theory of finite
sets (ZPp; ). The same is true for the ultrapower L =
= ’z?'L""’/Z (= (M,ﬁ) y 88y3 Z 1is supposed to be a non-
trivial ultrafilter on @ ). If we add to 7L all subsets of
Vw we obtain a model of GB set theory of finite sets
(GBpy,) » Let W’ denote the model obtained from % -by ad-
ding all subsets of M (i.e. %' =<MuQ, SUEMQY where
Qued{xeP(M); 71 (38)(x=4g; WL w gef? )3}). Now the si-
tuation is quite different (we have @%'hk GBp, ) since
there is a "finite cofinal part of On "; more precisely for
every non-standard natural number n* it holds in Wt that
there is a mapping from n* onto a coﬁngl part of On .
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We say that a class X is real ( Real (X) , see 1402
[1)) if the intersection of X with every set is a set.

Our guestion is if the submodel of WL/ consisting of -~
real classes is a model of GBFm o The answer is negative
since we shall construct a "real finite cofinal part of Omn ",
Consegquently real classes of ML’ cannot be closed under gode-
lian operations.

This paper arose in connection with building up of the
Alternative Theory of Sets (see [21). The inconsistency of
gome strengthening of the axioms of this theory was shown by
using the construction described in the paper.

We shall suppose AC and CH .

Remark., Ultrapower as syntactical model (% , say) is
an interpretation of GB in GB . Our construction shows that
there ig X ¢ w™ such that the intersection of X with eve-
ry x -natural number is a x -gset and X itself is not a
* -get, In other words, there is an interpretation of the
theory of semisets with the axiom (3 X csw)(Vnew)MXn
An) &= M(X)) in GB .

Lemma, If ¢ 18 a ZF-formula and if XsM is count-
able then W'k= (YVxeX)@(x)—> (I y) (e (y) & Xcy) .

Broof: Let X =4igy;s lewi & M= (VxeX)g(x) and
let k, denote the constant the value of which is x ., Put
dn =4k ; necw} (the class of all standard natural numbers).
Let us define f£(n) = { < gy(n),1> ; 1£n% . Then for every
n €cw we have
) M = X =270 &g ky) .

* the minimal na-
Since %! is a model of ZFpin ‘D°F° ja n
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tural number (less than diagonal, say) with
MW = @ (270*)
kecording to (1) we have W 'p= XS£7 n¥*

Theorem. Mor every n* non-standard natural numbsr of
72L there is P with
0t’ k= Real(F) & Pne (F) & D(Men* & (VK)(IFL ) (Le W(P) &

k< £),

Proof: ILet n* be given, let 4 B3 xE%,7 bea
monotonous part of n* (l.e.x<fB< H;—> W = g € g,€.
en*) and let {h ; x & # 1% be a monotonous cofinal
part of On™ (Lie. o< 8 < #—> W b= hy & hye On &
& (Vh)(3«c € #7)W r heOn—>heh,) . We define by in-
duction the sequence {f, ; o € ¥} such that
(2) M = fo = 0
B) M= ,=2, vilh g >}

(4) o 1imit & (8 <> W = fgsf, & "L is & mo-
notonous funotion from g, intoe h  ".

The existence of £,  for limit o« follows from the indue-

tion hypothesis end from Lemma (put X =4 £,; fexi, g de-

netes "Ux is a monotonous funetion from g into hy " and

put £, =Uy ). Pinally let @t'me " P = UL, ; % € #7} "

leee (Yoo € ) Ot i= £, SP & (Vx)(Joc )WL 1= xe P —>
—~—>xef o Now we havq

1) 7’ = " P 1s a monotonous function from n* into On "
(by (4)).

2) (Y« € #*3) M = h e W(P) (by (3)) and therefore va-
lues of P form a cofinel part of On?' |

- 639 -



3) 7% = Real(F) . Let xeM then there is o« such that
%t = W(x)n OnEh, . By using monotony of rﬂ’ 8 we have
W' (P =2, )nx=0 and therefore %'=Fnx=£f_n x.,
Since %! k= M(f_n x) it is W'e=M(Fnx) .
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