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REMARKS ON SUBDIFFERENTIALS OF CONVEX FUNCTIONALS

HO DUC VIET, Praha

: Differentiability properties of c¢onvex func~
tions a eir subdifferentials are studied. ’
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-

The present paper contains some remarks on the subdif-
ferential df of a convex functional f defined on a real
Panach space. Theorem 1 deals with strict monotonieity of

Of . Theorem 2 characterizes the uniform differentiabili-
ty of convex functionals using their eonjugate functionals.
Theorems 3, 4, 5 are concerned with the uniform contimity:
of Jf . The main results and proofs of this note have been
encouraged by the works {1, 2], where A. Asplund and R.T.
Rockafellar have generalized in [1] the results concerﬂing
the continuity of the spherical mappings proved in [2] to
the case of subdifferentials of convex functionals.

Throughout this paper X , X* will denote a real Ba-
nach space and its normed conjugate space respectively, un-
less axpncit;} stated otherwise. We shall write {x, u¥y
for the value of u¥¢ X* at xeX . The system of all
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subsets of a given set NcX 1s denoted by 2' and its
boundary by Fr M . A set-valued mapping ¢ of N into
Zx‘ is said to be strictly monotone on M if
{(x =y, u¥=v*)>0
whenever x, yeM , x3y , w*e g (x) , v* & ¢ (y) . Let
R denote the set of all real numbers. An element u*e X*
is said to be subgradient of the functional f: McX—> R
at xek 1if
(y) ~2(x) 2 <{y~-x, u*)

for each y in M. 'o‘ denote by 9fr(x) the set of all
subgradients of £ at x . The set-valued mapping Jf:
tx —> 32(x) of M imto 25 1s called the subdiffe-
rential of £ . If Of(x)%® , £ is said to be subdiffe-
rentiable at x . For a functiongl f: M—» R , NcM and
u* € Y* we shall use the following notationa:

R(N, 22) = U 3 r(x) ,

x€eN

(30)L(N,u*) ={xeN: u*e d2(x)}.
Furthermore, for any functional f: M—» R we define

M*={uke X*: gup [ x,u*) - £(x)]< + 0},
xeM

£¥ (u*) = suﬂ‘ [ x,u*) =£(x)] for all u* in M*,
X€

If M*4 0@ , then the functional ©¥: M¥—» R is called the

conjugste of f£: M—» R ,
We say that a functional f: M—» R is convex if M
is a convex set and
r(tx » (1 = t)y) g tr(x) + (1-t)e(y)
for all x, yeM and Ogt&l . A convex functional f: N —»
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—> R 18 said to be closed if the (convex) set
epif ={(x,t)e XxR: xeM , £(x)gt ?

is closed in the space XxR .

Suppose now f: M—» R 1is a closed and convex funec-
tional. Then f has a conjugate £* and £ 1s a turn of
the conjugate of f£* in this sense, that

M={xeX: sup [{x,u¥) - £* (uk)]< + 0},
w¥e M*

£(x) = sup [{(x,u*)> = £¥(uX)] for all x in M

“re M
(see e.g. [ 3]). In this case we say that f: M—>» R and
f£*: ®* —p R are conjugate to each other and for arbitra-~
ry x€M , u* ¢ ¥¥ the following relations hold:
(a) u*e 9 r(x)¢e=) 2¢(x) &8 K uF)i=m £(x) + £¥*(u*) =

= (x,u*) ;

(b) R(M,DP)cM*,
R(M*, 2%} A~ 9 (X) c ee(M) ,

where 4¢ : X—p X** = (X¥)* 43 the canonical imbedding of
X into X*%* ,

A functional f: M—> R is said to be uniformly G&
teaux differentiable on a set Nc M , if £ has the Gateaux
derivative £°(x) at each xeN and

1im 2x + th) - £(x) _ <h, £7(x)>
t—0 t
is uniform with respect to x€N . We say that £ is uni-
formly Fréchet differentiable on N if the Fréchet deriva-
tive f'(x) exists on N and

1im 2lx,h) =0
h-0 Wi
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is uniforn with respect to xeN , where
rix,h} =f(x + h) - £(x) - ¢ h, £°(x) ) .

We start with the following theorem which is a genera~
lization of the theorem 5.1 in [4] and the theorem 1 in [5).

Thegrem 1. Let M be a nonempty convex subset of X
end f a subdifferebtiable convex functional on M v Then
the subdiffersnmtial Of of f 1is strictly monotone if
and only if f ie strioctly convex.

Proof. Let df: ¥—> ' ve strictly monotone.

If £ were not atrictly convex, then there would exist

X, , €M and A e (0,1) such that for x, = Ax) +
+(1-2) x, we have
(1) f(xo) = Af(x;) + (1 -2) £(x;) o

Choose arbitrary u: € d£(x,) and fix it. Then
(2) tlx,) - r(x) &< x - x5, w*y , 1 =1,2.,

On the other hand, it follows from (1) and (2) that .

rlx,) - f(xo) = [415" f(xo) - jﬁ. f(xl)J - f(xo) =
A a
= -'1—-5 [f(!o) - f(x1)3 £ <_4—:a (xo - xl)’ u:> =

= <x, = x5 85>

and
£lxy) - £x,) = [4 £(x) - -4—;: f(xz)]- tx,) =
= -————[f(x)-f(xz}lé( (x - x5), ug *y =

A
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Hence

2lxg) - £lx)) = {x; - x, u*> , 1=1,2.

Now, for every xeM , i =1,2 :

£(x) = £lxy) =[£(x) - £(x )1 + [£lx ) - rix)] 2
z<{x-x,, u:) + {xy = xq,u8) = (x - xg,u¥> .

From the definition of subgradients and the last in-
equality it follows that u* e dtix;) N 9 £(x,) and then
<x - xa,u:) = 0 . This contradicts the strict monotoni-
city of O8°f .

Let £ be strictly convex. Let x, yeM , u*¢g o £(x) ,
v¥e 3 £(y) be any fixed elements. From the definition of
subgradients we have

(y - x,u¥)=2¢ okl ,u*>ész(x

;v>- f(x)] .

Hence

fly) - £(x) - {y-x,u*dz £(y) - £( ) -2[r( ade')- £(x)])=

2
£(x)+ £(y)
2

= 2 - £( x';-’“’ )J>0.

Thus
{y=-x,u*) < £(y) - £x) .
Similarly as above one.can deduce
{x -y, V) < f£(x) - £(y) .
Now we have

{x -y,u*=v*> =<{x-y,u*y = (x=-y,v*) >
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>[f(x) - £(y)] + [2£(y) - £(x)] = 0.,
so that 8f is strictly monotone. This completes the
proof.

Now we introduce the concept which is a generaliza-
tion of rotundity defined in [1]. Let g be a functional
defined on a subset D of a Banach space Y , and let T
be a-locally convex topology in Y . Suppose &*c Y* is
& subset such that A*c R(D, 9g).

Definition. We shall say thet g: D—>R is < —uni-
formly rotund on the set NcD in the direction A* if
for any open < -neighborhosd V of the origin in Y the~
re is d > 0 such that for every u*e A* and
ue(dg) ™l (Nyu*) the following implication is valid:
veY,u+*veD, glu+v) - glu) - {v,u*)cdamdveV .

The next theorem will show that just introduced con-—
cept is not empty. Before stating this theorem, we give an
example of a uniformly rotund functional. As follows, a Ba-
nach space X 1is always identified with the range under
the canonical mapping 2¢: X —>» X** _ It is worth to say
that a functional g defined on the conjugate space X*

is 4 -uniformly rotund on a set N*c X* in the direction
AcX .

Example. Let us consider a functional £* defined

on the set
M¥*={u*e X*: Ju*||lg 13 c xX*
by the following prescription

*(u*) = 0 for all uX e m¥*.
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We demonstx:ate that f£* : X* — R is norm uniformly rotund
(1.e. uniformly rotund with respect to the norm topology) on
M* in the direction S ={xeX:{xl =1% if and only if

the Banach space x* ig uniformly convex (i.e. for a given
€ > 0, there exists d'(e)>0 such that Ju*=- v¥*|z ©
for u*, v¥e X* with Ju*)l & 1 and lv*l &€ 1 implies

1 - -45 I a* s vkl 2 6(g) ).

Let f£: X—>» R be the functional such that f(x) =
= |xJl for all x in X . Then f: X— R and f£*:
: ®M¥—> R are conjugate to each other. In virtue of this
one can find such Sc R(X,8f) that the following relations

are true for any x in S @
uXe (329)7) (¥ x) Guemy u¥e I £(x) ,
u¥e (W™ (mkx) =) | u*ll=1, {x,u*) =1.

Suppose that f£* is norm uniformly roturid on M* in
the direction S . If X* were not uniformly convex, then
there would exist g, > O such that for every J > 0 the-
re would be u*(d"), uf ("} in M* such that

ha () - uf (I Iz e, 1= - | o) +uFEN< .

Now ,from the uniform rotundity of f* it follows that the-
re 18 d, > 0 such that for every x€S and u* g
e (ML (x ,X} the following implication is valid:

vhe X*, u* + vRe N*, £¥u* + v¥) - £¥(u¥) = (x,vh)=

€
= - <x,v*>d;:uv'*“< ——5-0— .
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Set uf =u1"‘(-%ve-) y u =u2*(—-§°—) . Then
Nu™ -w*llzeg 1- 4 ***‘l<~§9—
1 W 2%, 7 o | U 2 ¢

Since llu*| = aups(y,ux‘) for each u*e X*, there
s

exists x€$ such that
dp
1-—;—<x,u1**n2*)< Ta. .

Hence we have that
[1-(2,\11*)]‘4;, 1=1,2.

Choose arbitrary (but fixed) u*e T Y (M*,x) and
set v’;_‘ = uf -u* , 1=1,2.Then u*+v*e N* for
i

1,2, and consequently
- Kxv) ==dxuX ~u*) =1-<xu*dcd,
1i=1,2,
From this it follows that
Hvi””=||ui*-u*|<-%g- , i1=1,2.
We have now

fuX - *) & llul* -l o+l w* -utl< g,

which 1s a contradiction.

Let X¥* be uniformly convex and suppose that £*:
: M*— R is not norm uniformly rotund on M* in the di-
rection S . This denotes that there exists 0 = eo < 2
8o that for any J > 0 there exists x(d)esS , u*(J) €
€ (3eM™L (¥, x(d")) and v*(d)eX* such that
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0¥ () + M et , = < x(), v¥(d)> < &,

but | v > €4

Let o = d'(€,) , where d” is the modulus of convexity of
X*

§(e) = 1inf (1- L uke v*l1, 0 < 2.
wh ke M* 2
lu*-wr* N2 €.

For x, =x(dy), uy =udy) and v} =v* ) we

have now that

W) a*
- x,v¥y = 2(<x,, u} - — °2 —>1 =
(# *) *
= 2{1-(x0, Mo * Mo ' ¥ Mo 1l z
2
2 2‘[1--:'2-\\(u: +v:)+u:\\]’é
2

28 (Mwlew®)-ul N 2 26, > J

H

which is impossible. Thus £* is norm-uniformly rotund on
M* in the direction S .

Consider now the functional f: M~ R , which is con-

tinuous, closed and convex. If Int M@ (Int M denotes

the interior of M in the norm topolcgy), then £ 1is sub-

differentiable on Int M (see e.g. [6 , p.911). Further-

more, Int M contains every subset N such that Nc M

with dist (Fr N, Fr M)>0 , and so NcR (M¥, 3¢%) , whe-

re f£*: M*— R is a conjugate function of f: M—>R .
Theorem 2. Let M be a convex set in a Banach space

X with Int M@ and N be a subset of M such that

- 649 -



dist (Fr N, Fr M)>0, Let f£: M— R be a continuous, clo-
sed and convex functional.

Then £ : X—> R 4s uniformly Giteaux (Fréchet) dif-
ferentiable on the set N if and only if its conjugate
functional f£*: M*_3 R is w¥-uniformly rotund (norm—
uniformly rotund) on M* in the direction N ,

The proof of this theorem is based on a similar argu-
ment to that of Theorem 1 [1], We shall need the following
assertion.

Lepmg 1 (see [1, p. 448}). Let f: M—> R and ft*:
: ®*—» B be convex functionals conjugate to each other.
Let xeX and u*e M* be such that

{xu*) = f£(x) -ex(u*) =0,
For any ¢ > 0 1let

la»(x,u*‘) ={y€X: x + yeM , £(x + y) - £(x) - {yu*><d3,
l:-(x,u") =4{vte X*: u*+ v*e B¥, £H(u* + v¥) -
-tXu*) - {x,v*> & I3 .

Then, for any d >0 ,
(et (x,u")] ¢ I~ o(x,u% c 2 O[wA(x,uM)] ,

where by “[E*] we denote the polar X of a set Br*cX*
in X :

°tl"']_={xs!: (xyu*><£ 1, ¥ u*e E*%.

Proof of Theorem 2. We do the proof only for the ce~
se of GBteaux differentiability. The proof of the case of
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Fréchet differentiability is similar.
By convexity and continuity of f it follows that f is
uniformly GAteaux differentiable on the set N if and on-
ly if, for every h,€X and € >0 , there existz a t =
= (t(&,h°)>0 such that

(3) N+ thcM,

[ £(x +th°) - £(x)

" -<h°,u*)].=<:,, ¥ xeN,
a*e 9 rix) .

Let f: M—»R be uniformly G8teaux differentiable on N
and let Vie,h ) =4u*e X*: ho,u*)é gfbe a whneigh-
borhood of the origin in XX* (hyeX , £>0) . Let t =

=t (= ,h,) >0 be the number such that (3) holds with

—Z’—- . For any xeN , u®¥e & £(x) set
Alx,u*) ={heX: x + theM , [I_(I_*_E.m_:im - < h,i"]<

€
& — .
2 3
Then
hy e M Alx,u® .
xeN
wre OF(xX)
Since A(x,u®) = { heX: x + theM ,

t -
[£{x + th) - f(x) - <th,u*>¢-3£— =71 l*“z (x,u™),

where Ms(x,u*‘) is the set introduced in Lemma 1, we ha-
ve that
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-1 -
2e~Tneze't M Mg (xub) .
x6& N
“ 8 df(x)
According to Lemma 1 there is a d >0 so that

2e~"n €2 xr;\N O (x,u%)] =
ur g SFn)
-2 O )
=2 °C ;\kQJN Md.(x,u*)] .
a*e O€(x)
By taking polars we get
* = *
vie ,n)) 2 xktJN M (x,u¥) = x\.JN M (x,u®
urg OF () M4 (BF ¥ (M%) :

From this it follows that, for every w™neighborhood

of the form V(g ,h ) , there exists a J > 0 such that
the following implication holds for each x€N and

u¥e (6eM7L (Mhx) :

vhe X* , wk + vre M* | [ £F(u* + v¥) - £X (u¥) - < x,v*]<

< d=pv*e vie,h) .

Because the family of all finite intersections of neigh-
borhood of the form V(e,h)) 1s a base at o for the
weak* topology, f 1s w'-uniformly rotund on M 4n
the direction N .

The sufficiency can be proved quite analogously.

Corollary (3mulian [7]). A Banach space X 1is uni-
formly Fréchet smooth if and only if its conjugate space
X* is uniformly convex.

Proof. The assertion follows immediately from Theo-

rem 3 and from our example,,
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Similarly one can formulate the necessary and suffi-
cient condition for uniform Fréchet smoothness of X .

Definitiom (Cudia [2]). Let E; , E, be topological
linear spaces and let @ : D(@)c E;— 2fa be a multiva-
Iued mapping. We say that @ is uniformly lower semicon-
tinuous on a set McD(g) , if for every neighborhood W
of o in Ez there exists a neighborhood V of o in
E; such that

P ALu+Wlk o
whenever xeM , yex +V , u ey (x) .

Th m J. Let X be a Banach space, Mc X a convex
nonvoid subset of X with Int M8 , f: M—> R a subdi-
fferentiable convex functional on M . If the mustivalued
mapping & f: M —> ZX* is uniformly lower semicontinu-
ous on M from the norm topology relativized to M into
the weak* topology on X* , then £ is uniformly G8tesux
~differentiable on each subset N of M such that
dist (Fr N, Fr M)>0 .

Proof. Let N be any subset of M with
dist (Fr N, Fr M)>0 . By translation tc the set Int M
we may assume that M 1s open. Being f subdifferentiab~
leon M, f 1s lower semicontinuois on M . From this
and from the completeness of X it follows that £ is
continuous on M (cf. [3, § 2.10]). Hence the functional
£ 1is uniformly Gateaux differentiable on N if and only
if the relation (3) holds.

Let o#hoex and € >0 be arbitrary. We want to
find a 0<t = t(g ,ho) so that (3) may hold. According
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to the definitiom of the uniform lower semicontinuity to
the weak* neighborhood

W={wre X*: |{n ,w*)|2 -%—} of © in X* there
corresponds a o > O such that
4) AP Alu?+ Wil 40

whenever xeN, [x -yl =< d , u*e & rlx) .

Let now x, ye N be arbitrary and such that
lx-yl<ed . Since &Of 1s weak™ compact (see [8]) ,
there are uj ,...,u’ € 9r(x) go that

™ —
dtx) c ,U, (uf+W .

A=A

Together with (4) and the last relation it follows that
u’; e dr(y) + VW, 1 =1,2,.s0yn .
Hence
(5) df(x) c 0f(y) + W ,
where
Weiwke X¥: |<n eyl e 23 .
2

Similarly we have
(6) Of(y)l c 0f(x) +Ww.

Since dist (Fr N, Fr M) > O , there exists a t = t(d) =
= t(g yhy)  such that

Oct <= || hoﬁ-l .d,

N+ thocm .

Hence for each xe&N the element y =x + tho lies: in
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¥ and [x-yll < d .,
Let xeN, v*e @f(x + th)) be arbitrary. Then by

(6) we have that

t7) < ho,v*) £ sup {h,w*) &
wh e 8{‘(:4-'&!15)'
£ s8up < h01'*> £
whe OF (x)+ W
€
& s8sup < hy,w*> + -
w*e df (x)

On the other hand, by definition of subgradients,
£(x) - £flx + th } 2 < = th,v*> ,

or
t7 [ £(x + th) - £(x)T & < - th,v*> .

Hence for each u*e X*,
(8) t1[f(x+th) - £(x)I =< h,a*>sCh,v*) -
- <{ hgu*) .

a8 u*e & r(x) , the expression on the left of (8),
again by definition of subgradients, is a non-negative

number. Hence we obtain
{hy,u*> & < hy,v*>  (¥xe N, u¥e &f(x), v e
€ 8 f(x +th)) .

This implies the relation

(9) sup ¢ ho,w"‘) & inf (ho.w*) sy YV xeN.
wte 3F(x) e 3 (xath)
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By €5} we have for each u™¢ & f£(x)

(10) < n_,u”) inf {h ,w¥> 2
o’ E»ur“‘e of(x) o
inf <hgw*> 2
whe H€(x+th) + W
€
inf < ho,'* > - “'"2- .

ke OF (x+th,)

Together with (7), (9) and (10) this gives

mw

{hy,v*> & sup < hgw*> + £
nr*e o€ (x) 2

[
£ inf <h_,w*> + — £ ( h_,u*> «+
wre F(xsthy © 2 o’

+ E(¥xeN, ¥u*e 9f(x), ¥v¥e rlx+tn)) .

Hence we have, for each xeN , u* e 3 f(x) and v* e
€ 9 flx + thy) ,

{hg,w*y =< hyu*) < € .
By the instalment of the last relation into (8) we get
(3), so ¢ ’is uniformly Gateaux differentiable on N .
This concludes the proof,

Theorem 4, Let X , M and f be the same as in
Theorem 3. If 8 f: M—> Zx* is uniformly lower semi-
continuous on M (in the norm topologies), t‘hen £ is
uniformly Fréchet differentiable on each subset N of M
such that dist (Fr N, Fr M) >0 .

Proof. Let NcM be given such that
dist (Fr N, Fr M}>0 . We may suppose M is open. We
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shall use the following lemma which 1is well~known as a
result of Browder and Minty: Let @, : Mc X—> X* be a
hemicont inuous (singlevalued) mapping. Let M be an open
set and xeM , u* € X* such that

(y=-%x, @,y —u*>z 0
for each yeM . Then u® = @,(x) .

Let F(X*) be systems of all nonempty clesed sub-
sets of the space X* ., Then Jf(x)e F{X*) for each x e
€ M . Since the set N with relativized norm topology is
paracompact , every lower semicontinuous multivalued map-
ping @ : N—> F(X ) has a continuous selection (cf. [9,
Theorem 3.2"]).

Let us suppose that 0 f is uniformly lower semi-
continuous on N , Then @ f 1is obviously lower semicon~
tinuous on N . From this it follows that there is a sing-
levalued mapping q,: N —> X* guch that

@, {x) e 8f(x) for all xeN.

Let x e N be arbitrary. Because Jf is monotone, the
following inequality holds for each u* e & £(x) :

<y=x,, @) -u*)»20, forall yeM.

Then u* = qo(xo) by the mentioned lemma. The set
af(xo) consists of a single point. As x, €M has been
chosen arbitrarily, &f is singlevalued on M ., Hence
and by our hypothesis 6f 1is uniformly continuous, Fur-
ther the proef is quite analogous to that of Theorem 3.
Repark. The Browder-Minty's lemma is usually for—
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mulated for operators acting on the whole of a space. From
thelr proof one can see easily that the just formulated
lemma is true.

Theorem 3. Let f: McX—> R be a closed convex
functional, Nc M a subset of ‘M such that
dist (Fr N, Fr M)>0 . Suppose that f is bounded on M
and uniformly Gateaux (Fréchet) differentiable on M .

Then the derivative f(x): N—> X* is norm to
weak * (norm to norm) unifo:;'mly continuous on N .

Progf. First we notice that the assumption
dist (Fr N, Fr M)>0 implies the existence of A > O such
that N+ A hcM for all heX with [ hll = 1 . Hence

sup |l £°(x) = sup < h,'(x) ) &
xeN Wnllea :

4 sup A4 [£{x *2n) - £(x)] £
s
xeN

£ 2 sy |ex)].
A xeM
Now, from the boundedness of f on M it follows that
there is & K>O0O such that

l£(x)ll & K, for all xeN.

.Let f be uniformly Gateasux differentiable on N . Fur-
thermore, let W be any weak* neighborhood of o in

x*. By Theorem 2, the conjugate functional f* : M*— R
of £f:M—>R 1is weak* uniformly rotund on M* in the
direction N . This means that there exists a d; > 0 so
that for each xeN , u™=f"(x) the following implica-~

—658_



tiom holds:
vhe X%, u* s v¥e BX ) pR(pX 4+ v¥) - PR(uX) - {x,¥*D <
< 5;=7v*e' .
For any 'x, yeM let
wt=r(x) , wr=£'(y) , v¥= wk-u¥ ,
Then u* , v* ¢ M* (gee the relation (b)) and u* +
» R = whe MK,
Furthermore,
(¥} = (x,u*d - £(x) ,
P w® = Cy,w¥)> - f'.(y)
(see the relation (a)). Hence
A (u* + v*) = £X(u*) - { x,v* > = P¥(wk) -~ £R(u¥) -
- {x,w*=-u*) =[y,w*) - £(y)] ~
=[Cx,u*) = £(x)] = { x,w*=- u*) =
={y-x, w¥) *+[£(x) - £(y)] &
&y -x,w*) + {x -y, u¥X) &
& max Chu*l,lw*l) . Ix=-y0 .

If now x, y€N and |lx-y||¢d"=%, then

Rt + v¥) - M uH) - (x,v*> < d) .

Hence v*=f£"(y) - £'(x)¢W and £’ is so norm to
weak™ miforﬂy continuous on N . ' .

The proof of the case, when f is uniformly Fréchet
differentiable on N , is similar.
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Corollary. The subdifferential of the norm in & Ba-
nach space X is uniformly continuous on the unit sphere
if and only if the normed conjugate space X* is uniform~
ly convex.

Progf. The assertion follows immediately from Theo-

rems 4, 5.

Finally, I wish to thank J. Kolomy for the suggestion

of these problems and his comments.
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