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Abstract: There are given necessary and sufficient
conditions upon the right hand sides to be the linear va-
riational inequality solvable on a given half=-space. The
nonlinear inequalities are also investigated. The abst=-
ract results are applied to the inequaiities involving
the ordinary differential operators.
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1. Introduction. Let K be a closed convex non—emp-
ty subset of a Hilbert space H . Let S be an operator
(generally nonlinear) acting from K into H . The well-
known theorem (see e.g. [ 1], Chapter II, Section 8) says
that under some "continuity conditions on S * (e.g. S
is so-called pseudomonotone) and if S is coercive (i.e.

there exists Vo€ K such that

(Su,u -a)
(1.1) 1im @ ———2 =4 » )
lae Il = co (p7a!

) wek
then the variational inequality
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(1.2) (Su~f, v-uz0 for all vek

possesses a solution ue K for arbitrary feH .

It is easy to see that the condition (1.1) is not ne-
cessary for the validity of the previous assertion.

The purpose of this note is following. We consider
that K 1is a half-space in H and § is linear. We de-
fine a set Kerp S§ and if we denote by RK(S) the set
of all feH for which the variational inequality (1.2)

has a solution then we prove
" Kerp S = 40% if and only if Ry (s) =g ".

If Kerp S+40% then the description of Ry (s) is
given. So we obtain the analogous assertions as the Fred-
holm theorems for linear equations.

Using the results of the type above, by applying the
Schauder fixed point theorem, we obtain some results about
the solvability of the nonlinear variational inequality
(1.2), where S 1is the sum of a linear operator and a
nonlinear compact perturbsation.

Finally, we apply the abstract results to the varia-
tional inequalities involving the ordinary differential
operators of the second order.

The paper is an excursion to the problems which are
not solved up to now by the authors’ best knowledge. So
we also formulate some open problems which are in the
connection with our problems snd the solving of which

seems to be interesting and useful.
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2, Notgtion, terminology. Let H be a non-trivial
real Hilbert space with the inner mroduct (.,.) and the
norm full = (u,u)‘/" . Unles stated othérwiee, we denote
@ bounded linear self-adjoint operator from H into H
by A . Throughout the paper we fix gc H, lgh=1,
and denote

N=4{ueH ; (u,g) =0%,

K={ueH; (u,f) z0%,

k° ={ueH ; (u,§ )>03;

Let Ryg(A) be a set of all fe€H for which there
exists at least one ueK satisfying the ;.nequality

(Au-f, v=-u2Z0 for all vek. |

Finally, put

Kerp A ={ueH ; (Au, v = u)=0 for all vek%.

3. Auxiliagry lommag. Before formulating and proving
the results mentioned in Section 1 we prove some simple
lemmas.

3.1. Lemma. feRp(A) if and only if there exist
nocN s X Z0, 8Z 0 such that «2 =0 and

fsA(nooocg)- RE -

Proof. Let fe Rp(A) . Then
(3.1) (Au~ £, v=-u)20 for all vek,
where u=n +«f for some n €N and’ o Z O . Putting
v=u+tf , tZ 0, we obtain from (3.1)

(3.2) (b -t£,§)20.
Putting v=u+n, neN is arbitrary, we get

- 665 -



(Au = #,n)Z0 . Similarly (Au - £, -n)=0 and thus
(3.3) (Au - £,n) =0 for all neN,

Therefore Au - f = (3¢ for some real 3 and the inequa-
- lity (3.2) implies 3= O . Putting v =0 and v =2u
we obtain from (3.1}

(3.4) (Au - f,ul =0

endeo 0=(R¢ ,n+axfl=ap -
Conversely, let there exist nosN y 2 0, @ = 0such
that «3 =0 and £ = Aln, +«§ ) -f3§ . Then for u =

=n°*¢x§e K we have

(Adu-f,v-u =pg(g,v-n ~xf)=f(f,v)z0
for all vekK .
The following lemma explains the notion of KerK A .
3.2. Lemmg. Kerg A =Ker A udgjoxr’ s
where
T = {fweH; (w,§)60 and Aw =§3 .
‘Ppoof. Put M = Ker A u‘L’JocoT' .

Let ue¢ Ker A . Then obviously ue KerK A . Let Au =oc§ s
where o« > 0 4 (u,§)<0 . Then

(Au, v - u) = «.C(g,v) -(§,wWlz0
for all veK, i.e. ueKergA . Thus /M c Kerg A .
Conversely, let ue Kery A.If uek® then, by Lemma
3.1, Au=0, i.e. ucKer A and thus ueMm . If
ueN then (Au,n) =0 (putting v = u + n) for arbitra-
ry neN and (Au,§)Z0 (putting v =u+§) . Thus
Au=«f , «Z0,and ueM .If -uek® then
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there exist ne N, o >0 such that u=n -~ § -

Hence

(3.5) (au, §)20

(putting v = n, ) and

(3.6} (Au, o« § )2 t(Au,n)

(putting v = = tn + no) Por arbitrary real t and all

neN. It follows that
(3.7 (Au,n) =0

for all neN . The relation (3.7) implies Au = 2§
which together with (3.5) gives <4 Z O what is nothing

else than a e M .

4. Lipear inequalities.

4.1. Thegreme Let A be a self-adjoint operator on
H . Then Ry (A) = H 1if and only if Kerg A =40} .
Moreover, if Kerp A =40} then for arbitrary feH the-
re exists the uniquely determined Bfe K such that
(4.1) (ABf - £, v -Bf)20 for all vekK.

The mapping B from H into K is continuous, nonlinear

and

hen, 1a-Tgn?
(§,A%¢)

(4.2) lBell € 0a”20 . e

for arbitrary feH (A"l denotes the inverse of A ’
§ A~ its norm).

Proof. First, from Lemma 3.1 it follows that RK(‘A) =
= H 3if and only if the follewing three conditions are

|
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fulfilled:

(4.3) codim A(N) =1 ,
(4.4) A & AD,
(4.5) € e AK°) .

It 18 easy to see that the conditions (4.3) and (4.4) are
equivalent to

(4.6) Ker A = {0} .

Let now Kerp A =403 . Then (4.6) and (4.5) are fulfilled
and therefore Rx (A =H ., 1t RK(A) =H then (4.5) im~
plies that any solution of Au =ec§ with < > 0 lies
fn K° end thus together with (4.6) we have Kery A =
=40} .

To prove the second part of the theorem suppose that
Kery A = 40} , fe H , and let A"lg = w . According to
Lemma 3.1 we have

n, +tx§ = o = A"l ’
where
o =(f,w), =0 if (f,w)>0,

(£,c0)
(@, §)

« =0, =0 if (f,0) =0.

« =0, < ir (f,w)<0,

From this it follows the existence of a mapping B: £ —>

> n, *a § with the property (4.1) and also the estima-
te (4.2). The continuity of B 4is obvious.

Before the description of Ry (A) 4in the case of
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Kerp AF40% we mention that if A is a self-adjoint
operator on H then
AGH) = (Ker )& |
where
(Ker A)* ={xeH; (x,y) =0 far every yeKer A%,
4.2. Theorem. Let A be a self-adjoint operator on
H and let KerK A$403 .

(1) 1f ?eA(H) then

Be (A) =AM n{felH; v e =) (£f,0)>03.

(11) If §& AGH) then
Re (A) =4{fe H ; there exists a£0 such that for

every g €Ker A it 1s (f,7) = a(f,n) .

Proof. 1. First, suppose feRp (4) , i.e., by Lem-
ms 3.1, £ =Au-p3§ for uekK, B20.If fFe An
then fe A(H) and, moreover, for I'# @ and @ €T it
is
(f,@) = (au - Bf ,@) =~ B(§,w)+ (u§l)z0.

If § ¢ A(H) then

T (eyp) =(u-p§ ,q) =-p(§,7)

for alX 7 € Ker A , which follows the necessity part of
the statement (1i).

2. Let f =Aw and let fe€A(H) , i.e. £ =
= Aln, +9§) , where n €N and 2~ is reasl. It follows
that (f,@) = 2 and the proof is complete in view of
Lemma 3.1 if (£,w)20 . In the case of " =@ and
(fy0)<0 14t must be @ =) + F§ with ne N and
& >0 . Putting
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(£, w)
p =- — we have £ + B3f =Aln, +pA3n),
and, by Lemma 3.1, feR(4) .
3. Suppose now §& A(H) = (Ker A)* and let £ sa-
tisfy the conditions of (1i). Thus there exists 7, € Ker &

¢
such that (f »M,)#0 sand so a= ——iL")- . Since

(§,%)
£ - a§ e (Ker aA)L  there exists n e N and real o~ such

that f-af =Aln,*2§ +rn,) for arbitrary real
r . The element 7, can be expressed in the form 7, =
=m + d'f with n; €N and non-vanishing real J° . The-
refore

£ =4lln, + rny) » (g+ rd)E] - (-al§

and putting r = - -% we obtain, by Lemma 3.1, f &
€ Rp (1) .

The following two remarks are the immediate conse-
quences of the previous theorems and they will be ‘used in
Section 6.

4.3. Remark. Let Ker A be one dimensional genera-—
ted by the non-trivial vector 9 .
(1) I* (§,7)>0 then Ry (A) ={feH ; (£,7)£03.
(11) 1r (€ ,7) =0 and I'# # then all elements of
' are of the form @ + rq , r arbitrary real number,
and Ry () = {feH ; .(f,q) =0, (f,0)20%.
(1i1) Ir (§7m) =0 and I'=¢ then

RK(A) ={feH ; (f,) =0},

4.4. Regork., let Ker A =10} and T # £ . Then
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' contains a precisely one point @ and

Re (A) =4{feH ; (f,w)2z0% .

« Jonlinear inequalities.

5.1. Theoreg. Let Kerp i = 40% ond let T be a
ncnlinesr completely continuous mapping from H into H .
Suprose that there exist ¢20 , 420 , o €<0,1) such
that

(5.1) lTallge+atun?

for all ue .
Then for arbitrary <fe€ H there exists ueK such
that

(5.2) (Au = Tu =P, v-u)zZ0 for all veKk.

Proof. Let feH , @ € H . With respect to Theorem
4.1 the element u = B(Tg + f) is the unique solution

of
(5.3) (Au =T =f , v =-ulZ0 for all vekK .

It is sufficient to show that the mapping F: & >
+—> 3(T@ + f) has a fixed point in H . The mapping P

is completely continuous and

1Pl b a0 (cralgd? + lel)

e+ lgiTeasi) ja-"g)?
(§,A"¢)

Thus there exists R>0 such that [ FPgll £ R for all

@eH with Il@ll £ R . The Schauder fixed point thecrem
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implies the desired assertion.

5.2, Theorem. Let Ker A =40% and let wel' ., Let
T be a completely continuous operator satisfying (5.1)
and let

inf (Tu,w) =¢; > -~ @ .
« eB

If feH, (fyw) 2 - ¢ , then the variational ineque-
1ity (5.2) has a solution uek . ‘

Proof. It is sufficient to show that there exists
ueK such that

1 -1

(5.4) u=AT"Tu+4"f.

The Schauder fixed point theorem implies that there exists
ueH satisfying (5.4). Moreover,

(u,§) = (Tu,@) + (F,w) 2 ¢; - ¢; =0
and thus uek .

5.3. Theorep. Let Ker A =40% and let «w eI, Sup-
pose that T 1is a mapping from H into H such that

sup (Tu,w) =c, < + @ .
u.cpH ! 2

Let feH , (f,w)< = ¢, . Then the variational inequa—
1ity (5.2) has no solution uek .

Proof. Suppse that (5.2) has a solution u=n+
+xf with neN and o 20 . From Lemma 3.1 it foll-
ows that there exists B3 20, o« =0 , such that

n+x§ =A-1Tu+A"lf+(.5a) .

If « =0 then
0 = (Tu,w) + (f,0) + B(a,§) = (3 (=,§),

- 672 -



i.e. [54 0 which is a contrary.
If 3=0 then

o« = (Ty,w) + (fw)< ¢, - ¢y =0,
which is again a contrary.

5.4. Theorem. Let Ker A be one-dimensional genere-
ted by the non-trivial vector % such that (§,7%)%0 .
Let T be a nonlinear completely continuocus ore rator sa-

tisfying (5.1) for all ueN . Let

(Tm,m) o
/u(,ﬂ, —— = O = <+ .
meN (g,'rz) 3

(£,79) <
CENI.)
quality (5.2) has a solution uek .

Ir feH, - ¢3 , then the variational ine~

Proof. It is sufficient to find ne N such that

£
(5.5) Tn+f-Mg=m
(§,m)
and
(s
(5.6) Tmefun) Lo,
¢,7)

Denote by L the right inverse of A from {¢@ € H ;
(cf,oz) =03} onto N . The mapping L is continuous and
the equation (5.5) has a form

(Tm +£,9)

S rEa%) 3y,
(§,7)

The Schauder fixed point theorem implies that the equation

(5.7) L{Tn+f -
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(5.7) (and thus also (5.5)} is solvable in N . Moreover,
for arbitrary solution ne€N of (5.5) it is

(Tﬂp,@) . (£,n)
(§7"l) (§,7)
which verifies (5.6).

503"03:0

5.5. Open problems. We have not had any success to
give at lez'ast sufficient conditions for the solvability of
(5.2) under all other possible conditions on A conside-
red in Section 4. Moreover, it will be interesting to give
the necessary and sufficient conditions on fe H to be
(5.2) solvable. For example, under assumptions of Theorems
5.2 and 5.3, the problem about the solvability of (5,2) if

= e, £(f,) =< - ¢y, is not solved.

6. Application. Let H = W '2(0,ar) be the space
of all absolutely continuous functions on the interval
{ 0,2r)» vanishing at O and s and derivatives of which
(existing almost everywhere) are square integrable over
(0,ar) 4in the Lebesgue sense. The space H equipped
with the inner product

(u,v) = j:ru'(x) v (x) ax , u, veH ,
is a Hilbert space.

Let- © e (0O,or) . Put

1, /6(r-0)
?M—jr—ﬂfObtée
-t Ve("'ei it G<te® .

x- 0 a

- 674 -

(6.1) § (1) =




Obviously ¢ e H, Ngl=1, end X=4veH, v(@)z0%.
Let A .be a real number. Define the mapping 4,
¢t B—»H such that for all u , veH it is

(Ay u,v) = A fﬂ u'(x) v(x) ax - j:r ul(x) vix) dx .
[}

It is easy to see that Aa' satisfies all assumptions of

Section 2 and, moreover,

-1
Ker Aﬂ=€0§ if and only if A $ .= <7 s J is a posi-
¢ 3
tive integer,
and, if A -.’h,a" then Ker A, is a linear hull of sin jx .

Let fel, (0,o) . Then
[
@ (v) = jo £(x) v(x) dx , veH ,

is a bounded linear functional on H . Thus, in view of
the Riesz representation theorem, there exists the unique-
1y determined Ufe H such that (ug, v} = @(v) for all
veH .

Put

-1
Rplhy ) =070 (R (4, ),

f.e. fel, (0,) is an element of Ry (4,) if and

only if there exists at least one ue K such that

(6.2 & [Tu’t0) [v'() - u'G0] ax -
¥ -
= [ a0 Lyl - umlax z [T [vlx) - ubo] ax

for all vekK.

6.1, Lemmg. Let fec<o,m>n:RK(A,l) and let
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uek be a solution of (6.2).

(1) If u(8)>0 then uec®<0,or> , and
- Au"(x) - ulx) = £(x)

farall x e{0,r> .,

(11) Ir u(@) =0 then ue€2(0,6% n 2< 8,7 »

and
" - A w(x) - ulx) = £(x)
for a1l x€ < 0,8) N (6, 1> and Au'(8-)2 A u’'(6+).
Cqﬁberaely, it reC<0,ar ) and u satisfies either the
conditions (1) or (11) then ue€K and u 4s a solution
of (6.2).

Proof. 1l. First, suppose that ueX 1s a solution
of (6.2). In the case of ul&)>0 the function u be-
longs to X° which means that A, u=Uf . If u(é) =0
then (sce Lemma 3.1} Uf = A, u=-@3§ with some non nege-
tive 3 . Using integration by parts we obtain either

T X X
Jrawto « fla) at+ [Te) a1l g7(x) ax =0

or

ar X . X ,
f,eau’ s [Tt at - pg ) s [ 2 atd g'tmax =0

for all < € H . Using the standard regularity argumént we
prove that u satisfies the differential equation either
on 0, (in the case of (1)) or on < 0,8)v (&, )
(in the case of (11)). Further, by the second equality we
obtain

ALu'te-) - u’(0+)] =0 mzo .

- 676 -



It follows the last statement of (1i).

2. Conversely, if ueH satisfies either the condi-
tions (1) or (ii) with feC<(O, s> then it immediate-
ly follows that ue€K and A&, u =Uf in the case of (i).
If the conditions (ii) asre fulfilled we have, using inte-
gration by parts,

- 29(0)[u’(B-) ~u'(é+) + (4u-Ur,9) =0
for all o€ H., Taking ¢ =v ~u, véK , the assump~
tions Au'(8-) Z2Au’(0+) and u(®) =0 1lead to

the inequality
(Aju-0f, v-u2zo0

holding for every veK . By definition, it follows f. e
€ Rp (a,) .
Similarly one can prove

6.2. Lemmg. Let < € H satisfy A @ =§ (§
is given by (6.1)). Then w & €2<0,2r> and

-2 @'(x) - wix) = §(x)
for all x € {0, o> &
Keeping the notation introduced in Sections 2,3 and

solving of the equation from Lemma 6.2 it is possible to
prove by computation the following three lemmas.

6.3. _lmao Let .ﬂ; s_‘xiz" ’ K > 0 . Then it 1‘

always I' = {w % ,where

8 (sv- t s
(6. (t) =) ———— {— — nh -
3a) @ (%) V . s * TYCR) [sinh x(t -0 )+
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4- ezuct-a‘)

+ e-xt
4 - ‘-ﬁﬂ.a

sinh aLGJ}
if 06t €6 and

(6.3b) () =

‘[“—em 5 { o 1= }
3 b <
Ty & qlo-mew MM

if O<t=oar .

6.4, lemmg. Let .ﬂ.--i;, >0 , oo is not a posi-

tive integer.
(1) 1f
a Mmoo 8. sim o (ar-8)

(6.4) - 1
8(xr-0) & Ailm o Ir

then " = {w} , where

(6. 5a)¢.>(t),\/6"’“9’ M”f‘“’e)mu}
9 e(:rr-e) o pim ocar

if 04t 46 and

(6.5b) w (¢t) =
-\/"“""’s b T PO im o (or 1:)}
o -8  O(w-8) «xnincsw it

ﬂe<t68f’.

(11) 1f _
a am 8. sinx (o7r-86) > 4
6(m-9) x sim o o

(6.6)
then I =g,
6.5. Lemma., Let A = 7!. = '{n‘. for some positive in-
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teger J .
S
(1) 1P 6-?m sy k=1,000,J-1,then P =4(@ +

+ a sin jJt ; a real §, where
Se

(-1) ., -5
. = - t
(647a) w(t)=( t+é_&mg ) P
if Oété-&—ﬂr and

4
*

. (t) = (¢t - )\/-—,——-
(6.7b) w(t) = (t-ar 7 G- )

b
iIf —N<t e .
4

a 3 -1

(11) 1¢ ee(o,a)\{—é—,..., —;——ar} then T = 0 .
Now, we are ready to apply the abstract results of

Section 4.

6.6, mo It is ﬁ‘K (Aa) = Ll (O,S'f) if and

only if A = E%i’ >0 , « 1s not an integer and the in-

equality (6.6) is fulfilled.

6.7. Remark. Especially, from Theorem 5.6 it can be
shown that Ry (A,) =1, (0,or) provided A >1 . This
result is also possible to derive from the abstract theo-
rem in [1] mentioned in Section 1.

6.8. Remark. For O = —Z— the infinitely many inter-—
vals of A for which Ry (A, ) =1L, (0,or) can be found
from Lemma 6.4 and Theorem 6.6 as it 1is sketched in the

following figure:
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4 1 A 1

The situations for other & € (0,ar) are similar but they

are more complicated.

6.9. Theorem. (1) R (’A&) ={feL (0,or) ;
.4
j‘o £(x) w (x) dxz03} if and only if either A < O and
e« 1is given by (6.3) or A >0 , .ﬁ*% s J =1ly0ee ,

(6.4) holds and @ is given by (6.5).
(11) Ry (A,) ={rel) (0,m) ; j:"f(x) sin jx dx<£0}

if and only if A = —4—2 » J 1s a positive integer, and

2% +1 -1
ee(%’zgf, é+-ﬂ), »-a,...,’[r =17
(111} Rg (A, ) =4frel) (O,ar) ; [ £(x) sin Jx dxz0}
o

if and only if A = '4_9'. » J is a positive integer, and

95(2:'«4,, 2“;+2w), k=0,...,[%]—4 .

>

(iv) £K~(A.h.) ={fel, (0,) ; j;f(x) sin jx dx =0
7 1

and J‘a £(x) @ (x) dx20% if and only if A = 3503 1

a positive integer, @ = —;_-'-ar s k=1,05.y J -1, and

@ 1is given by (6.7).

Some results about the solvability of nonlinear ine=-
qualities with ordinary differential operators_are also
possible to derive on the base of Section 5 and the previ-

ous lemmas.
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6.10. Theorem. Let g be a continuous real valued
function defined on the real line. Suppose that there exist
¢20 , dz20, g &« <0,1) such that

(6.8) letg)leecralgt?

for all real § .
Then the variational inequality

r
(6.9 AL w0 v - uwmIax- [ ut) [vlx) -
() o
- ulx)] dx + _Ifg(u(x)) [vix) = u(x)] a&x =z
*
> J; £(x) [vix) - u(x)] dx for all vek

has a solution ueK for arbitrary fel; (0,ar) provided

that A = —-4-; , >0 , « is not an integer and (6.6)
oc

holds.

6.11. Theorepe Let A = 'ia' s J 1s a positive inte-
F

ger, and ee(n:’w, 2:*4 w) 5 k=0,..., ?-;—4- .

Let g be & continuous real valued function defined on the

real line and

(6.10) (§)l = .
Es’.\u“:‘lg§ €<+ o0

Then the variational inequality (6.9) has a solution
u K provided that felL; (0,a) eand

1
j £(x) sin Jx dx<- 2¢ &
o
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6.12. Remark. An analogous assertion as that in Theo-

rem 6.12 is also possible to be given for
24 +1 2%+2 - 21-4 .
65.( 7 3 ar), % 0,...,[2_'] 4

6.13. Theorem. Suppose (6.10). Then the variational
inequality (6.9) has a solution ueK provided that fe

€L, (0,7 ) and one of the following conditions is fulfil-
led:

(1) 7L=-—1;, o« >0 , and
o«

n ar
(6.11) Tt e ) axze [ o) lax,
0 /]

where @ is given by (6.3) ;

(11) A = -1; , >0, oc is not an integer, (6.4) and
<

(6.11) hold, where o is given by (6.5).
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