Commentationes Mathematicae Universitatis Caroline

Josef Daneš; Jiří Durdil
 A note on geometric characterization of Fréchet differentiability

Commentationes Mathematicae Universitatis Carolinae, Vol. 17 (1976), No. 1, 195--204

Persistent URL: http://dml.cz/dmlcz/105685

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

$$
17,1 \text { (1976) }
$$

A NOTE ON GEOMETRIC CHARACTERIZATION OF FRECHET DIFFERENTIABIIITY
 Josef DANEŠ and Jiř1 DURDIL, Praha

```
Abstract: This note gives a direct geometric characterization of Fréchet differentiability of mappings between Banach spaces.
Key words: Banach space, Fréchet differentiability, cone.
AMS: 47H99, 58 C 20
Ref. Z.: 7.978.44
```

1. In the paper [1], the geometric characterization of Fréchet differentiability in Banach spaces by means of the notion of a tangent was given. The notion of a tangent in a Banach space was introducer there as a generalization of the Roetman's definition of a tangent in a finitely dimensional space (see [2]), i.e. using an intersection of a certain system of co-cones (see below).

Giving that geometric characterization of differentiability, we can avoid the rotions of a tangent and a co-cone and deal with the intersection mentioned above as with an only basic notion. $O f$ course, the principal ideas of that procedure remain the same as earlier, however, the charac-
terization will be obtained from new, say, the pure geometric approximation point of view. This is the aim of our paper.
2. For completeness, let us recall first the notions of a co-cone and a circular co-cone that were introduced in the poper [1]:

Definition 1. Let X be a normed linear space, C a cone in X with a vertex at O, H a linear subspace of X of the co-dimension I and denote $S_{1}=\{x \in X:\|x\|=$ $=1\}$. The number $\propto=\operatorname{dist}\left(C \cap S_{1}, H\right)$ is called the deviation of C from H, the set $C^{\circ}=X \backslash[C u(-C)]$ is called the co-cone to C (in X) and deroting by $\mathscr{C}_{H, \infty}$ the system of all cones in X with a vertex at O and a deviation \propto from H, the set

$$
C_{H, \alpha}^{\prime}=\cap\left\{\overline{C^{\prime}}: C^{\prime} \text { is a co-cone to some } C \in \varphi_{H, \infty}\right\}
$$

(it is a co-cone in X, too) is called the circular co-cone in X with the vertex 0 and the co-deviation \propto from H

It is easy to see that

$$
\begin{equation*}
C_{H, \infty}^{\prime}+\left\{\lambda x: \lambda \geqslant 0, x \in S_{1}, \text { dist }(x, H) \leqslant \infty\right\} ; \tag{1}
\end{equation*}
$$

nowever, this is just the formula by which a circular co-cone was defined in [II and hence, both the definitions of circular co-cones here and in [1] are equivalent.

Definition 2. Let X be a normed linear space, Z a
line ar subspace of X and $\varepsilon>0$. The set
$C(Z, \varepsilon)=\{x \in X:$ dist $(x, Z) \leqslant \varepsilon\|x\|\}$
is called the ε-cone of Z (in X).
Note that any ε-cone is a cone but it is not necessarily convex. There is a simple relation between ε-cones and cirvilar co-cones.

Lemma 1. Let X be a Banach space, Z a closed linear subspace of X and $\varepsilon>0$. Denote by \mathscr{H} the system of all closed linear subspaces of X of the co-dimension 1 . Then

$$
C(Z, \varepsilon)=\cap\left\{C_{H, \varepsilon}^{\prime}: Z \in H \in \mathscr{H}\right\} .
$$

Proof. Let $x \in C(Z, \varepsilon)$ be arbitrary and take an arbitrary $H \in \mathscr{H}$ containing Z. Then dist $(x, Z) \leqslant \varepsilon\|x\|$ and hence

$$
\text { dist }\left(\frac{\mathbf{x}}{\|\mathbf{x}\|}, H\right) \leqslant \operatorname{dist}\left(\frac{\mathbf{x}}{\|\mathbf{x}\|}, z\right) \leqslant \varepsilon \text {, }
$$

i.e. $x \in C_{H, \varepsilon}^{\prime}$ by (1). So we have proved that

$$
C(Z, \varepsilon) \in \cap\left\{C_{H, \varepsilon}^{\prime}: Z \in H \in \mathscr{H}\right\} \text {. }
$$

On the other hand, let x_{0} be an arbitrary point of $\cap\left\{C_{H, \varepsilon}^{\prime}: Z \subset H \in \mathscr{H}\right\}$. We shall proceed similarly as in the respective part of the proof of Theorem 1 in [1]: Denoting by X^{*} the dual space of X, we set

$$
z^{+}=\left\{x^{*} \in x^{*}:\left\|x^{*}\right\|=1,\left\langle z, x^{*}\right\rangle=0\right. \text { whenever }
$$

$z \in z\}$
and $\mathscr{Z}=\left\{H_{x *}: x^{*} \in Z^{+}\right\}$where $H_{x^{*}}=\left\{x \in X:\left\langle x, x^{*}\right\rangle=\right.$ $=0\}$; it is $\mathscr{Z}=\{H: \mathbb{Z} \subset \mathbb{E} \in \mathcal{H}\}$ and $\cap\{H: H \in \mathscr{Z}\}=Z$. By [1], Lemma 1, we have

$$
\begin{equation*}
\left|\left\langle x_{0}, x^{*}\right\rangle\right| \leq \frac{\varepsilon \cdot\left\langle u_{x *}, x^{*}\right\rangle}{\operatorname{dist}\left(u_{x^{*}}, H_{x^{*}}\right)} \cdot\left\|x_{0}\right\| \tag{2}
\end{equation*}
$$

for all $x^{*} \in Z^{+}$and $u_{x *} \in X \backslash H_{x *}$. According to HahnBanach Theorem, there exist $x_{0}^{*} \in X^{*}$ such that $\left\|x_{0}^{*}\right\|=$ $=1,\left\langle z, x_{0}^{*}\right\rangle=0$ whenever $z \in Z$ and

$$
\left\langle x_{0}, x_{0}^{*}\right\rangle=\operatorname{dist}\left(x_{0}, z\right) .
$$

It is $x_{0}^{*} \in Z^{+}$amd hence, for every given $\delta^{r}>0$, hosing $u_{x_{0}^{*}} \in X \backslash H_{x_{0}^{*}}$ so that $\left\|u_{x_{0}^{*}}\right\|=1$ and

$$
\text { dist }\left(u_{x_{0}^{*}}, H_{x_{0}^{*}}\right) \geq \frac{\varepsilon}{\varepsilon+\sigma}
$$

(such $u_{x_{0}^{*}}$ exists by the well-known theorem of F. Riesz, see egg. [3]), we obtain from (2)

$$
\left|\left\langle x_{0}, x_{0}^{*}\right\rangle\right| \leqslant\left(\varepsilon+\sigma^{\sigma}\right)\left\|x_{0}\right\| .
$$

We conclude that

$$
\text { dist } \left.\left(x_{0}, z\right)=\left\langle x_{0}, x_{0}^{*}\right\rangle \leqslant(\varepsilon+\delta)\left\|x_{0}\right\| \text { for all } \delta^{r}\right\rangle \text {, }
$$

i.e. $x_{0} \in C(Z, \varepsilon)$ by Definition 2. The proof is completed.

Definition 3. Let X, Y be normed linear spaces, $L: \mathbf{X} \rightarrow \mathbf{Y}$ a linear mapping and $\varepsilon>0$. The set

$$
C(L, \varepsilon)=\{(x, y) \in X \times Y:\|y-L x\| \leqslant \varepsilon\|(x, y)\|\}
$$

is called the ε-cone of L (the norm on $X \times Y$ is given by $\|(x, y)\|=\|x\|+\|y\| \quad$ (or by any other equivalent one)).

So, if L is a linear mapping from X into Y, we can consider two associated ε-cones: $C(L, \varepsilon)$ according to Definition 3 and $C(G(I), \varepsilon)$ according to Definition 2, where $G(L)$ denotes the graph of L in $X \times Y$. Both these ε-cones are in a close relation, as the follaring two lemmas show.

Lemma: 2. $C(L, \varepsilon) \subset C(G(L), \varepsilon)$ for each $\varepsilon>0$. Proce. Let (x, y) be a point of $C(L, \varepsilon)$. Then dist $((x, y), G(L)) \leqslant\|(x, y)-(x, I x)\|=$

$$
=\|y-L x\| \leqslant \varepsilon\|(x, y)\|,
$$

i.e. $(x, y) \in C(G(L), \varepsilon)$.

Lemma 3. $C(L, \varepsilon) \supset C\left(G(L), \varepsilon^{\prime}\right)$ for each $\varepsilon, \varepsilon^{\prime}>0$ whenever $\varepsilon^{\prime}(I+\|L\|)<\varepsilon$.

Proof. Let (x, y) be in $C\left(G(L), \varepsilon^{\prime}\right)$ and let $\delta>0$ be such that $\left(\varepsilon^{\prime}+\delta^{\prime}\right)(1+\|L\|) \leqslant \varepsilon$. Take $u \in X$ so that

$$
\begin{aligned}
\|(x, y)-(u, I u)\|= & \|(x-u, y-I u)\| \leqslant \\
& \leqslant\left(\varepsilon^{\prime}+\delta^{\prime}\right)\|(x, y)\| . \\
& -199-
\end{aligned}
$$

Then

$$
\begin{aligned}
\|y-L x\| & \leq\|y-L u\|+\| L(x-u \| \leq \\
& \leq\|(x-u, y-I u)\|+\|L\| \cdot\|x-u\| \leq \\
& \leq\left(\varepsilon^{\prime}+\sigma^{\prime}\right)\|(x, y)\|+\|L\| \cdot\|(x-u, y-I u)\| \leq \\
& \leq\left(\varepsilon^{\prime}+\delta^{\prime}+\|\Sigma\|\left(\varepsilon^{\prime}+\delta^{\prime}\right)\right) \cdot\|(x, y)\|= \\
& =\left(\varepsilon^{\prime}+\delta^{\prime}\right)(I+\|L\|)\|(x, y)\| \leq \varepsilon\|(x, y)\|,
\end{aligned}
$$

i.e. the point (x, y) is in $C(L, \varepsilon)$.
3. We are going now to our main theorems. These theorems can be derived (in Banach spaces) from [1], Theorem I and our Lemma 1; however, we prefer to present here the direct proofs of them.

Theorem 1. Let X, Y be normed linear spaces, F : $: X \rightarrow Y$ a mapping Fréchet differentiable at. $0, F(0)=$ $=0$. Denote by $L=F^{\prime}(0)$ the Frechet derivative of F at 0 , by $R=F-L$ the remainder and set

$$
\begin{aligned}
& \sigma^{\prime}(\varepsilon)=\sup \{\delta>0:\|B x\| \leq \varepsilon\|x\| \text { whenever } \\
& \left.\|x\| \leq \sigma^{\sigma}, x \in X\right\}
\end{aligned}
$$

for $\varepsilon>0$. Then for each $\varepsilon>0$,

$$
G(F) \cap B_{X X Y}(0, \delta(\varepsilon)) \in C(G(L), \varepsilon)
$$

where $B_{X \times Y}(0, r)=\{z \in X \times Y:\|z\| \leqslant r\}$. Proof. Let $\varepsilon>0$ be arbitrary, let $(0,0) \neq(x, F x) \in$
$\in G(F) \cap B_{X_{X Y}}\left(0, \sigma^{(}(\varepsilon)\right)$. Then $\|(x, F X)\| \leq \sigma^{\prime}(\varepsilon)$ and $\|x\| \leqslant\|(x, F x)\| \leqslant \delta^{2}(\varepsilon)$, so that $\| P(x\|\leqslant \varepsilon\| x \|$. Set $\lambda=\|(x, F x)\|$ and $(u, v)=\lambda^{-1}(x, F x)$. Then $\|(u, v)\|=$ $=1$ and
dist $((u, \nabla), G(L)) \leq\|(u, \nabla)-(u, I u)\|=$ $=\|(0, V-I m)\|=\|V-I m\|=$ $=\lambda^{-1}\|F x-L x\|=\lambda^{-1}\|E x\| \leqslant$ $\leqslant \lambda^{-1} \varepsilon\|x\| \leqslant \varepsilon$.

As $(x, F x)=\lambda(u, v)$, we have

$$
\text { dist }((x, F x), G(L)) \leqslant \lambda \varepsilon=\varepsilon\|(x, F x)\|,
$$

i.e. $(x, F x) \in C(G(L), \varepsilon)$.

Theorem 2. Let X, Y be normed linear spaces, F : $: X \rightarrow Y$ a mapping continuous at 0 with $F(0)=0$. Let $L: X \longrightarrow Y$ be a continuous linear mapping such that for each $\varepsilon>0$ there is $\delta>0$ such that

$$
G(F) \cap B_{X X Y}(0, \delta) \in C(G(L), \varepsilon)
$$

Then F is Frechet differentiable at 0 and $L=F^{\prime}(0)$. Proof. Let $\varepsilon^{\prime}>0$ be given and take $\varepsilon>0$ such that

$$
\epsilon<\frac{1}{2(1+\|L\|)} \text { and } \frac{2 \varepsilon(1+\|L\|)^{2}}{1-2 \varepsilon(1+\|L\|)}<\varepsilon^{\prime} .
$$

Take $\delta>0$ so that

$$
G(F) \cap B_{\mathbf{X}_{\times} \mathbf{I}}\left(0, \delta^{\sim}\right) \subset C(G(L), \varepsilon)
$$

As the mapping F^{\prime} is continuous at 0 , there exists $\delta^{\prime} \epsilon$ $\epsilon\left(0, \delta^{\prime}\right)$ such that $x \in X,\|x\| \leqslant \delta^{\prime}$ implies $\|(x, F x)\| \leqslant$ $\leq \delta$.

Let $x \in X$ with $\|x\| \leqslant \delta^{\prime}$ be given. Then $\|(x, F x)\| \leq \delta^{2}$, hence

$$
\operatorname{dist}\left(\frac{(x, F x)}{\left\|\left(x, F_{x}\right)\right\|}, G(L)\right) \leq \varepsilon \text {, }
$$

and so we can find $x_{\varepsilon} \in X$ such that

$$
\left\|\frac{(x, F x)}{\|(x, F x)\|}-\left(x_{\varepsilon}, I x_{\varepsilon}\right)\right\|<2 \varepsilon .
$$

It follows now that

$$
\left\|x-x_{\varepsilon}\right\| \leqslant 2 \varepsilon\|(x, F x)\|
$$

and

$$
\left\|L\left(x-x_{\varepsilon}\right)+P x\right\|=\left\|F x-L x_{\varepsilon}\right\| \leq 2 \varepsilon\|(x, F x)\|
$$

where $\mathbf{R}=\mathrm{F}-\mathrm{L}$. Then

$$
\begin{aligned}
\|B x\| & \leq\left\|I\left(x-x_{\varepsilon}\right)\right\|+2 \varepsilon\|(x, F x)\| \leq \\
& \leq\|L\| \cdot\left\|x-x_{\varepsilon}\right\|+2 \varepsilon\|(x, F x)\| \leq \\
& \leq 2 \varepsilon(I+\|L\|)\|(x, F x)\|=2 \varepsilon(I+\|I\|)(\|x\|+ \\
& +\|F x\|) \leq 2 \varepsilon(1+\|I\|)(\|x\|+\|L\|\|x\|+ \\
& +\|F x\|)
\end{aligned}
$$

and hence,
$\|E X\| \leq \frac{2 \varepsilon(1+\|I\|)^{2}}{1-2 \varepsilon(1+\|I\|)} \cdot\|x\| \leq \varepsilon^{\prime}\|x\|$.
We have proved that for each $\varepsilon^{\prime}>0$, there is $\sigma^{\prime}>0$ such that $x \in X,\|x\| \leq \delta^{\prime}$ implies $\|P x\|=\|F x-I x\| \leqslant$ $\leq \varepsilon^{\prime}\|x\|$, which means that L is the Frechet derivative of F at 0 .
4. At the end, the second author wishes to use his opportunity to make the following corrections of his paper [1]:

In the definition of a tangent on p. 526, the condition
" (iii) The mapping F is continuous at x_{0} " would be added; a similar correction is needed in the definition on p. 532. The proof of the formula (10) on p. 532 (starting from the choice of a δ on p. 531) is incorrect; however, that formula follows easily from the continuity of F a x_{0}. Some other misprints occured in [I] are not essential and they can be corrected by the reader without any dififculties.

References

[1] J. DURDIL: On the geometric characterization of differentiability I., Coment. Math. Univ. Carolinae 15 (1974), 521-540.
[2] E.L. ROETMAN: Tangent planes and differentiation, Math. Mag. 43 (1970), 1-7.
[3] K. YOSIDA: Functional Analysis, Springer-Verlag,1965.

Matematický ústav
 Karlova universita
 Sokolovska 83, 18600 Praha 8
 Ceskoslovensko

(Oblatum 8.1. 1976)

