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SPLITTING OF PURE SUBGROUPS

Ladislav BICAN, Praha

%

Abstract: This note gives a structural characteriza-
tion of torsion-free abelian groups H of finite rank n ha-
ving the property: if G is a mixed group with G/T'2 H then
every pure subgroup of G o rankn splits if and only if G
satisfies Conditioms (ec),(p~).

Key Words: Splitting group, p-rank, regular subgroup,
generalized regular subgroup.
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By the word "group" we shall always mean an additively
written abelian group. The symbol & will denote the set of
all primes. If T is a torsion group, then,Tp will denote the
p-primary component of T and similarly if ¢’s ## then ¥,
is defined by T,. = ﬂ%ﬂ, Tp. If G is a mixed group, M a sub-
set of G, 7S and T, = O then (W3S, = {geG|mg e (M3
for some non-zero integer m divisible by the primes from a’
only ¥ is the ar’/-pure closure of M in G.

In the sequel, we shall deal with mixed groups G with
the torsion part T = T(G), @ will denote the factor-group
G/T and a = a + T for all a€G, If H is a torsionfree ,.group
then the set of all elements g of H having infinite p-height
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is a subgroup of H which will be denoted by H[p* ] . Any
maximal linearly independent set of elements of A torsion-
free grbup H is called basis. It is well-known (see [7])
that if H is a forsionfree group and K its free subgroup of
the same rank then the number rp(H) of summands C(p®) in
H/K does not depend on the particular choice of K and this
rumber is called the p-rank of H, A subgroup K of a torsion=-
free group H is called regular if every element of K has in
K the same type as in H and it is called generalized regu-
lar if for every g€ K the characteristic of g€ in K and in H
differ only in finitely many places, Other notation and ter-
minology is essentially that of [4] and we shall freely use
the results of [1] and [3].

Now we shall formulate Conditions (), (3*) (see [11).
Condition (x ): A mixed group G with the torsion part T sa-
tisfies Condition (&) if to any g€ GLT there exists an in-
teger m such that mg has in G the seame type as g in G.
Condition (9): We say that a mixed group G with the tor-
sion part T satisfies Condition (g~) if it holds: If G = G/T
contains a non-zero element of infinite p-height, then Tp is
a direct sum of a divisible and a bounded group.

wIemma 1l: Let G be a mixed group of the form G =
= :Lzs" {b;5® H, where {b;j} is a cyclic group of order

p’e‘i‘ y 1< 1449, 1 =1,2,... abd H is a torsionfree group of
renk n such that H [p®J% 0 . Then G contains a non-split-
ting pure subgroup of rank n.

Proof: Let £ a,hz,...,hn'; be a basis of H such that

.. . G
a is of infinite p-height. Put K ='i&’h2""’131}ﬂé-i1ﬂ+
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+ 4 ha,...,hnlg and let‘aié H be such elements that

1 S

by, 1 =1,2,..., U = {K,sl,sz,...} and S = 4 03¢

pﬁ'— a; = a . Obviously, H = € K,8y,85,00.5 . Put 8; = a; +
* sredfpnd *

First, we shall prove the purity of S in G. It suffi-
ces to show that any equatiom pkx = u, ue U, solvable in G
is solvable in U, since the equation pkx =8, s€S is 8ol~
vable in G then pkmx =ms, ms€ U for a suitable non-zero
integer m prime to p. Hence pku' = ms for some u'c U and
the equality pksu +m6 =1 yields s = pk(@s + 6u’), @8+
+ 6 u’e S. So, let the equation px = u, ueU, be solvable

. £ X x, &
in G, x = E (43b; + h. Then px = p{ = (wyby + h) =
2.

H

=u=h’+z: Q585

1-:’1 1’
p*n

£
h' + 2 A 183 Thus there are integers vl, i=1,
2,000,1, With A, = p* ; + B ;. Put = 2 P

h’e K, hence p

p

1
Y

Since h'e K, h’ = hy + hy, where 'mhl @ a~+ Z ?1 i
for some m pr:.me to p and p h2 S. @;h.. Hence np<*Th =
=pg>&+p Z‘. @shy +m226'1h1+pm E&a‘.Since

52) a+pm 2 2s@; is of infinite p-height, pk+r =
= & Z =
—vz-zz@ R L o O
+ 9~ ® (v +@)s +veU, L£.zk, Now for prec + m[3 =
29 3

-

= 1 we haveh + g: s, = pie (h’ +, é nge;) +
+f3m(h+2.ﬂ- k(eo(h+é,,ﬂ-a)+[$u)e
ep~ U sux:epu=m..§: VCH +goa+212gb
+mh2~m(§: g8y +h’). The purity of S in G is proved.

Suppose now that stpl:vc.s, S=P®B., Thena=1%+ b,

1

teP, beB, since a = P s,€8, a is of infinite p-height

in G, hence in S and hence t is of infinite p~-height. How-
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ever, P & Z -ib % yields t = O and aic B, The purity of

B in G guarantees the existence of cje B with p'e’" cj = 8,

All cj, J =1,2,... are of infinite p-height, hence cJ -

-8;€ '.‘Z 4 by t are of infinite p-height and consequent-
Iy e; =
€S and hence bl =8, - 8,€8,

aj, J =1,2,.... In particular, we have a; = c,€ Bs ‘

By the definition of S, mble U for some integer m%0
prime to p. T!ms mby = v+ 2 A, 81’ v=uv+ vae]( where

I
m v SPB--I'_;‘:

1) ,_;Dihifor some m”’ prime tip andpv2=
g B‘h Frontheequalitymbl—v-'- E: ﬂ,ai

+ "%‘ Asbs, we get p 4| m- A 1) and consequently

(py, 24) = 1. Ioreover, Ay = p'e'v .ﬂ.i i=2,.0.,1. Put=
ting A = ;3>,A; end multiplying by p'z"“zm' we obtain .
“rrpa s ptn B, o v pMal R, eple

+ @lprm' a+ J\«p’z"*"m a . Since {a,hyyece,h % is a ba-
p'e"+)"

0=p
sis, plf*l‘go + ﬂ-lprm' + A m’ =0, hencep |, - a
contradiction showing that S does not split.

lemma 2: Let H be a torsionmfree group of finite rank
n satisfying the following two conditioms:

(a) rp(H) =r(h[p®]) for almost all primes and for
all primes p with r(H [p®]) =

(b) for ev;ry generalized regular subgroup K of H of
rank k<n, the torsion part of t;he factor-group H/EK has on-
1y & Tinite mmhe!; of non-zero primary components.
If a mixed group G with GXH satisfies Conditioms (oc),( )
then every pure subgroup of G of rank k splits.

Proof: Let S be a pure subgroup of G of rank k and P =
= TN S be its torsion part. By [1, lemm 6], S satisfies
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Condition (e ) and § is isomorphie to some regular subgroup
of G, Moreover, by [1, Lemma 10], S satisfies Conditiom (2~).
IfU is a pure' subgroup of H then by [ 7, Theorem 61 rp(H) =
= rp(U) + ?p(H/U),which together with the obvious inequa.lity
r(HLp®l< r(ULPp®)) + P(HULP®] ) yields rp(U) =
=pr(WLp®] ) for all those primes p for which rp(H): =
=r(H[p®] ). It follows now easily that rp(§) = r(S[p®]
for almost all primes ard for all primes p with r(S[p®]) =
=r(H(p%®] ) =0, So the set ¥ ={pea ; rp(‘s') =
=r, (8 [p®]) is cofinite and By, ,. is a direct sum of a
divisible and a bounded group by the hypothesis. Hence S =
=Py., ® S°. Nows’® R,, splits, S°® R,.=P'® s’’,
since it clearly satisfies Condition (i) of [3, TheoremJ.
Moreover, S is Rg, -flat so that the map S°¥ S’'® 2 «»
<> S’®@ R=P’ + S” is monic. Since P’c §°, S’ eplits as
desired.

Lemma 3: Iet H be a torsionfree group of finite ramnk
n, If 0%rH [p*®] )< rp(H) for every p from an infinite set
gr’ of primes then H contains a regular subgroup K with
H{p®lc K for all p € #° and H/K ?@‘%WC(})”).

Proof: Obviously, there is a subgroup L of H such that
HLp®le Lfor e2.p e’ and H/L =ﬂ§ﬂ,c [p®] . It
we order all the primes from Jr’ in a sequence P1sPosese and
all the elements from H-L im a sequence 8),85,..., then it
is easy to see that for every natural integer m there is a
subgroup K with 1L, -{313; gusey -fan}:&s- K, md H/K =
= C(py’ ). If we put K =~f§4 K, then it is sn easy exercise
"to show that K has all the desired properties.
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Lemma 4: lLet H be a torsionfree group of finite ramk
n containing a regular subgroup K with O+H [p*®l ¢ K for
every prime from an infinite set or” of primes, and H/K =
“Z“’C(p ). Then there is a mixed group G satisfying Con-
ditions (ec), (%) such that G=H and G does not split.
Proof: Let hl'hZ""’hn be a basis of K, If we order
all the primes from &’ in a sequence PysPpse.. then for
every i, j = 1,2,... there are elements (l)e H such that
pjx(l) ”_g" A(J)hr where (A (J)) r=1 2,...,n are p;-
edic integers. Let 8; be such that x(l),...,x(")e K and
:izl,... ¢ K. Obviously, H = { K, x- i = 1,2,..., j=8y +
+ 1,... % . I we denote “,(ji: = pi-b : xél), Jj>s; then it is
easy to see that uéi) are of zero pi-height in K for all J =

= 1 92y0e0 o Further, for every i,j = 1,2,...,
l (i) (1) m (9 J"‘l) (Bj"'j) 8. +J (i)
Py (g - wit)mZ, (g T - 257 mr=pt vitle K

Define the groups
o @
3 (1) =4 oli)_ 5 a€i) (1)
U=K@,~,§H§4§'1} X ={v;"'-pja +

i,§ =1,2,..0%

v ={xufi) - patt) i =12,..7, W -fx,pii 61)

8:42 .
i :
- pi aj(.l),, 1= l’z,goo}c
Then G = U/W is a mixed group with the torsion part T = V/W
and G = G/‘! = U/V=H where the last 1somorph:.am is induced
waed 3 AP ne, s ;,am =), nex
Asd 31 J * ]&

(if the last term is zero then the multiplication lu TT ¢ Pi
gives p; | A, (i) i=1,2,c0.,k and the induction y:.elds
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Ker ¢ = V). @ satisfies Conditiorms (e«), (2+) since K is
regular in H. Suppose that G splits, G = T@® S. Then S is
naturally isomorphic to H and it is easily seen that xgi) ’

jZs8; corresponds to the element ¥1) of the farm y(l)
- n(-i). + 3 A, - palt)

Further, if we denote by g, the ¢élements of S correponding

to hr, then mg, = mh, + W, * = 1,2,...yn, vhere m is a suit-
8;+1
able non-zero integer. Now consider the equality P; (1)

Vs, +1
% a_(a +1) .
= 2 e s (pi,n) = 1, Multiplying by m we get .
85 (8%1
p;t m(a(l) E "chu- - pka(k)> =n Z ﬂ,u. hr
+
+ Z (a.k(p ! u{k) - pk -{k)).

If we put @ = JT p:k s P = 94,:4, then multiplying

by @ and comparing the coefficients we obtain

1 ( 1) ( *1)
ai+ n 2 -7!. hk: n@ A- K
(s +1) 8.+1 8, +2
+ §"‘.:‘-“(“'1:1°1;'7L y P mo APy = 9°(“'kpk .
(°1+1)
Hence p; | Py for all k and eo P; |.9L r=

= 1,2,...,n, a contradiction finishing the proof.

Now we are ready to prove the main result,

Theorem 5: The following are equivmient for a torsion-
free group H of finite rank n:

(i) if G is a mixed group with Gxn then every pure
subgroup of G of rank n splits if and only if G satisfies
Conditions (), (%),
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(i1) (a) rp(H) = r(ELp%®]) for almost all primes
and for all primes p with r(H({p<]) = 0,

(b) for every generalized regular subgroup K of
H of the same rank n the factor-group H/K has only a finite
number of. nen-zero primary components.

Proof: (i) implies (ii). If r(H [p¥]) = O, then rp(H) =
=0 by {3, Lemma 2 and its proofl . Condition (a) follars
nav from Lemmes 3, 4. As for (b}, it follows easily from L3,
Lemmas 3, 4] .

(ii) implies (i). Iet G be a mixed group with G2H, If
G satisfies Conditioms (ec), (4*) then every pure sungroup
of G of rank n splits by Iemms 2. Conversely, if every pure
subgroup of G of rank n splits then G satisfies Condition
() by L1, Lemma 4] . If G does not satisfy Condition ()
then for some prime p it is r(H(p®]) = 0 and ‘l‘p is not a
direct sum o a divisible and a bounded group. By the hypo-
thesis, G splits, G = T @ A. Write T, = r;e D, D divisible,
Tl; reduced. T]; is unbounded so that it has an unbounded ba-
sic subgroup B ([1, Iemma 11]). Hence G contains a pure sub-
group of the form of Lemma 1 and an application of this ILem-
ma leads to a contradiction. Hence G satisfies Condition (9~)

and the proof is complete.
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