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SOME FIXED POINT THEOREMS FOR MAPPINGS SATISFYING FRUM -
- KETKOV CONDITIONS

R. SCHONEBERG, Aschen 1’

Abstract: The purpose of this paper is to give some
new results on fixed points for noncompact mappings in nor-
med linear spaces which behave something like o 1-Spaces

(e.g. Hilbert-spaces, Isp—spaces (lep <)),

Key words: Fixed point theorems; weak and strong Frum-
Ketkov contractions; compact and nonexpansive mappings; ge-
neralized contractions; Banach-contractions; Rothe-type,
Borsuk-type and ILefschetz-type theorems.

AMS: Primary: 47H10 Ref. Z.: 7.978

Secondary: 47H99

1. Introduction. In this paper we study the existence
of fixed points for mappings satisfying so called weak or
strong "Frum-Ketkov conditions" (see Definition 2 below).
These coﬁditions were introduced in an essential stronger
form by R.L. Frum-Ketkov [3) and M.A. Krasnoselskii [5] and
subsequently used (in this special form) by R.D. Nussbaum
[71,(8], M.A, Krasnoselskii [5], M. Furi and M, Martelli
[(13] and others in proving fixed point theorems. We estab-
lish various existence theorems under certain boundary con-

1) I would like to thank Prof, J. Reinermann for helpful
suggestions.

|
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ditions which include - as special cases - most of the known

results of this type and some interesting new ones.

2., Definitions and preliminaries. For a normed linear
space (n.l.s8) (E,{l 1), a subset X of E and a map £f: X—>E

we denote by X, OpX and Fix(f) respectively the closure of
X, the boundary of X in E end the fixed point set of f.
A(E, I I) stands for the collection of all nonempty closed
subsefa of E.

Definition 1, Let (E, Il I) be & n.1l.8., §+=XcE and K:
: X—>A(E, Il ). K is said to be admissible:<==>w

Definition 2, let (E,Il. 1) be a n.l.s., #+XcE, f:
: X—>E and let K: X—>A(E, || }.) be admissible.

(i) £ is said to satisfy a weak Frum-Ketkov condition with

respect to Kicmr A, (£(x), K(x))£d(x,K(x) 2)

(ii) £ is said to satisfy a strong Frum-Ketkov conditiom
/ with respect to K:é=>

() A\, a(f(x), K(x))& a(x,K(x))
x'eX .

(B) [ Lim(d.p, Ky )y iy >0 =~

/N
("‘n)ue IN € XN

=> Tin (A(£0x;), K000y < TEB(A00,,Klx )y

Remark 1., If f satisfies a weak (strong) Frum-Ketkov
condition with respect to some admissible K: X—>A(E,} 1)

2) For yeE and McE d(y,M) denotes the distance from y to
M
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we call £ a weak (strong) Frum-Ketkov contraction.

Proposition 1. Iet (E, W ) be a n.l.s., #+XcE, £:
¢t X—>E, McE be compact and m € [0,1) such that

x/e\( A}{M Lex) ~ylenmlkx -yl

Then f is a strong Frum-Ketkov contraction

Proof: Obvious. .

Proposition 2. let (E,(,)) be a Hilbert-space, @4 Xc E
and £: X—>E

Then

(i) If f is a Banach-contraction (i.e. \/ /\
A€L04) x,4€X

le(x) - £(y)l « A Ul x - yl) then £ is a strong Frum-Ket-

kov contraction

(ii) If X is the finite union of closed, convex sets

and £ is a generalized contraction

(i.e. < x-}/to,'n x/\ X L£x) - £y £ « (x)x - yh)

1'3‘&

then £ is a strong Frum-Ketkov contraction

(iii) If X is bounded and f nonexpansive
(i.e.) X(n}Ex l£(x) - £(y)0 £« x =y )|) then £ is a weak
Frum-Ketkov contraction

Proof:(i) By a well-known theorem of Kirszbraun and
Valentine [12] there is a Banach-contraction g: E —>
— &5 (x1) 1) such that glg = . Choose yeFix(g) and de-
fine K: X—> A(E,(,)) by K(x):=<{y}1. It is easily seen that
f satisfies a strong Frum-Ketkov condition with respect to K.

1) For McE ©co(M) denotes the convex closure of M
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m
(ii) Let X = %’)24 C, with C nonempty, closed and

convex and choose a map j: X—>41,...,n% with /\ x€C. ..
xeX J(x)

For ve{1l,...,n% let rys E—>Cv be a nonexpensive retrac-

tion onto Cv. A theorem of W.A., Kirk [4] guarantees that the-

re is for v e {1,...,n% exactly one X € E with for (x)) =

= x,. If we ¢efine m:= max {ec(r (x )} | vedl,...,n3} we

have m € L 0,1) and for xeX: i f(x) - X5(x) N4

£ W(rj(x)(xj(x))) Ix - x,j(x)" £2mix - xj(x)ll o Hence f is

a strong Frum-Ketkov contraction by Proposition 1.

(iii) Analogous to part (i). Q.E.D.

Definition 3. Iet (E, Il II) be a n.les.,, #*X+E and

f: X—»E. £ is said to be demicontinuous: &>
/N /N, [lim(x )
(“aneMexm %6 X "

= lim (F(x ) = £(x,) (weakly)

ne = %o (strongly) =>

3. Fixed points of weak Frum-Ketkov contractions

Iemma 1, Let (E,(,)) be a Hilbert-space, f§+Ce€ H and
let P: E—» €6(C) be the metric projection onto £5(C)
(i.e. 43./e\E. fy - P(y)I = d(y,e(C)))

. 2 - 2 2
‘Ihenﬂ*/K\cc @Edcp(y),x) + Ny - P(y) | 2 a(y,K)

Proof: Let #+KcC, yeE and ¥,€ K. For A4 = (0,1)

we have
Iy - P2 =ay,sN%2 Iy - (APG) +

+ -y P = Hy - PN + A -EE) -3 )12 =
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2
=ly -p@ 2+ @ -2)21P@) -3y, 01"+

+2(1 -2)Be(y - P(3), P(y) - ¥5,)
nence 0£ (1 =) NB(y) - 3o 12 + 2 Rely = P(3),P(y) - y,)
and therefore (A —> 1-): 042 Re(y - P(y),P(y) - y,). This
yields

Iy -2l 2+ a@@),02ely - 2@ 2+ -y 02+
+ 2 Re(y - P(y),P(y) = y,) =¥ = P(¥)) + (B -y 2=

=ly - y,1 2

By taking the infimum on the right hand side of the last in-
equality we get the desired result. Q.E.D.

Theorem 1, let (E,(,)) be a Hilbert-space, $+XcE
be closed and convex, K: X—>A(E,(,)) be admissible such

that (%) xe/} X K(x)c X and let the continuous map £: X—>
e ; :

—> E satisfy a weak Frum-Ketkov condition with respect to
K

Then Fix (£)+ ¢
Proof: Set C:= ¥\.‘)-X K(x) and let P: E—> ¢6(C) and

r: E—>X respectively denote the metric projections onto

&(C) and X. By Schauder’s fixed point theorem there is xe E
such that Po fo r(x) = x. From lemma 1 we have

a(x,K(r(x)))? + I 2(x(x)) - x 122 a(2(r(x)) ,K(r(x))f 2
£a(r(x),K(r(x)))? am Alr(x) K(rx)N2+x - r(x) ) 2 &
£4(x,K(r(x)))2. Combining this, we get lx - r(x) 2 +

+12(x(x)) - x 1220 ana thus £(x) = x. Q.E.D.
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Remark 2. (1) M.A. Krasnoselskii’s theorem 5 in [5]
is a special case of Theorem 1.

(2) 1I* should be noted that we do not assume f [ XlcX
in Theorem 1 and that the assumptions in fact do not even
imply £ L3 gX1c X (E:=R ; X:=[-1,41]; f£(x):= -2x;
K(x):= { =x})

(3) Corollary 1, Iet (E,(,)) be a Hilbert-space, £ +
# XcE be closed and convex and f£: X—> E be continuous such
that there exists a compact subset M of X with

AN VIEx) -ylelx-yl
xXeX yeM

Then Fix(f)+d

4. Fixed points of strong Frum-Ketkov contractions

Lemma 2, let (E, | l) be a n.l.8., #=XcE be closed,
K: X—> A(E, !l I) be admissible and let the demicontinuous
map f: X—> E satisfy a strong Frum-Ketkov condition with
respect to K.

Then the following two assertions are equivalent

(i) Fix(£)% P

(ii) For e > O there is a nonexpansive map P: E—>E

such that Fix(Poe £)¥ % and |P(y) - yllee forye x\'e)x K(x).
Proof: "(i) = (ii)" For € > O define P:= Idg.
"(ii)==p (i)" Let C:= “L‘Jx X(x). By assumption there

are sequences (P )penN and (zy)peN Such that
(1) rn./e\N Pp® E—> E nonexpansive

- i
(2) FANSANEICLERIEE
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(3) /N, X €XAP o f(x) =x/

meN
If we choose for ne N  a point y, e K(x,) with
I £lxy) =y Il = alfxy),K(x,)), we get dlx;,K(x ) £

£| X, = ¥p el B ofix)) - P (y,) o+ P (y,) - ynﬂ
£a(f(x,),K(x,)) + 3.

Hence TIm(A(x,K(x,))) o) & LIB(A(£(x),K(x)))) s which

implies: ;!_._2’._m(d(xn,K(5))) = 0, By compactness of C we

nelN
may assume lim(d(xp,,K(x,))) .y = O and lim(x;), = X€C,
(strongly). The demicontinuity of f yields 1im(f(xn))nem =
= f(x) (weakly) and because of lim(d(f(x,),K(x,))), =0

we find 15—“‘1’%)’“1& = £(x) (strongly). The inequality
da(f(x),C) £d(£(x),K(x,)} £ I £(x) - f(:%)ll + a(f(x,),K(x,))
shows f(x)e C. Finally, because
Ix -2l €llx = x I+ 0P of(x) -Pofx)} +

# 1B of(x) - 2@l &l x-x | + I 20x) -2l + 3

holds for ne N , we see that x is a fixed point of £,
' Q.E.D.

Theorem 2, Let (E, | ) be a n.l.s., XCE be an open,
bounded neighborhood of the origin, K: X—= A(E, !l | ) be ad-
missible and let the demicontinuous map £f: X—> E satisfy a
strong Frum-Ketkov condition with respect to K.

Assume that there exists a sequence of' finite-dimensional

N
lire ar nonexpansive projections (Pn)neN € (%) such that
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. . 1)
lm(Pn(y))nem =y (strongly) for y e ngx K(x).
Iet furthermore one of the following conditions be satis-
fied:

(a) X is an open ball about the origin and

: a1l =A)x + AP(x) X)) .
1 =0

(i.e. £ is "weakly inward", see [10])

(b) The conjugate space of (E, | II) is strictly con-
vex and if J: E—> E¥* denotes the normalized duality map-
ping we have

@) AN R I ) £1x1?

€ aEx

or

(++) /\ . Re Jx)(£(x)) = hxl?
xeasx

(¢) X is an open ball about the origin and fT.BEXJ cX
(d) X is symmetric and /\ _ f£(x) = -f(-x)

ueaEx
Then Fix(f)#% 8

Proof: Iet ¢ > O, By a standard argument there is
nelN such that MPn(y) -ylee  for ye;Le)x K(x). In

view of lemma 2 it remains to show that each of the coﬁdi—-

tions (a) - (d) implies Fix(P o f)& #. Let H:=P [E].
(a) Using Pntf'.l = XnH it is easily seen that P e f

is weakly inward, too, when restricted to XnH. By a well-

1) Such a sequence exists f.e. if (E, | ) is a (a‘r)l-space
(see 181)
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¥nown result there is xe XA H with Pna £(x) = x.

(b) From [2] we learn that %/G\H J(y)e P = J(y). Hen-

ce P o flfnﬂ satisfies (+) or (++) (with X replaced by Xn H)
according as (+) or (++) holds for f. Therefore Fix(P o f)+
*ﬁlby thg Leray-Schauder theorem for finite-~dimensional spa-
ces,
(¢) We have (a) fulfilled and therefore Fix(P o £)=4.
(d) The antipodal-theorem for finite-dimensional spaces

yields the existence of xe HAX with P, o £(x) = x. Q.E.D,

Remark 3, (1) Theorem 2 with condition (¢) improves &
result of R.D. Nussbaum [8] where f is assumed to be a conti-
nuous map such that

S v N\ a(f(x),M) £ ka (x,M)

P4M c E compaet Hel0) xe X ’ ’

(2) Corollary 2. let (E,(,)) be a Hilbert-space, Xc E
be an open, bounded neighborhood of the origin and let f:

: X—> E be a demicontinuous strong Frum-Ketkov comtraction
such that

° 2
() x/eEEx Re (f(x),x) < hxl

or

: 2
(=) x/e\aEx Re (£(x),x) = I=xl*.

Then Fix(£)+0

(3) Corollary 2 improves the results of M.A, Krasnosel-
skii and P.P. Zebreiko [6] and J. Reinermann [91.

(4) Conditioms (e ) and ( = » ) of Corollary 2 are res-
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‘pectively equivalent to

M A lex) - xl 221202 - Dxl?
xe&EX

(D AL e -xh22hz2@h? - 1xi?
xed_X
13
(5) A long but elementary computation yields that if
X is an open ball about the origin (+ ) of Corollary 2 is

equivalent to (s « ») £ is weakly inward

We end this paper in proving & Rothe-type theorem, We
will need the following two lemmata. The first is a well-
known result and the second is proved in a more genersl form
_in [10]. For the sake of comple teness we give the proof of

the second one.

lemma 3, let (E,(,)) be a Hilbert-space, ne N ,
XyjeeeyX € E, MCE be compact and € > 0

Then there is a finite-dimensional subspace H of E such
that + xl,...,%”'; c H and the orthogonal projection P: E—>

—>H satisfies IP(y) -yl e for yeM

lenma 4, Let (E,\ ) be a n,1.8, and g+XcE be a fi-
nite union of closed convex subsets of E such that X is con-
tractible., let £f: X—> E be compct with £ L aEXJ cX

Then Fix(£)% 0

Proof: Since X is an ANR (see [11), a well-known re-
sult of Borsuk implies (by contractibility.of X) that X is
an AR. If r: E—> X denotes a retraction onto X, we define

. . {f(x) xe X
g: E—E by glx): ={rafor(x) xeENX °
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Since g is compact, Schauder’s fixed point theorem yields

Fix(f)4+ 0. Because of Fix(f) = Fix(g) we are done. Q.E.D.

Theorem 3. Let (E,(,)) be a Hilbert-space and XcE be
finite union of closed balls such that X is contractible in
the weak or strong topology of (E,(,)). Iet £: X—> E be a
demicontinuous strong Frum-Ketkov contraction satisfying
£ EaEX JcX

Then Fix(£)+ 4

Proof: Choose an admissible K: X—> A(E,(,)) such that
f satisfies a strong Frum-Ketkov condition with respect to X.
Set C:=;L:J:—f(—;r—) and let € > 0. By assumpt_ion there are n e
elN , XyseeesX € E and ry,...,r € (0,00) with X =
3,}';4 B(x,,r,). By Lemma 3 there is a finite-dimensional sub-

space H of E such that -(xl,...,xn}c H and the orthogonal
projection P: E —» H satisfies IP(y) -yll2e for yeC.
We have PLX1 = XnH and thus XnH is the finite union of
compact convex sets and contractible., Because

Pof [B3(XnH)IcPef [d XnHICPIXIc XnH we have
Fix(Po f)+ @ by lLemma 4, Lemma 2 gives the conclusion. Q.E.D.

Remark 4, (1) We do not know, whether the assumption
"X is the finite union of closed talls" can be weakened to
"X is the finite union of closed convex sets”, In this con-
text it should be noted that M. Furi and M. Martelli L131, in
extending a result of R.D, Nussbeum [ 7], recently proved that
(strongly) contractible subsets of arbitrary Banach spaces,

which are finite unions of closed, bounded and convex sets,
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have the fixed point property for special selfmappings of
Frum-Ketkov type, namely those we described in Remark 3 (1).
Unfortunately their argument doesn’t work in the general
setting, although it seems to be very useful in the area of
fixed p oint theory (see [101).

(2) Proposition 2 (ii) and Theorem 3 gives a fixed
point result for generalized contractions, which is extend-

ed to nonexpansive mappings in [10] .

NOTE ADDED IN PROQOF,

J. Dme3 from the Charles University, Prague, has indi-
cated to the author that Lemma 1 can be found in the appen-
dix to "Topological Methods in Nonlinear Analysis" (Charles
University, 1972/73) written by J. Kolomy and J. Dane3.
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