Commentationes Mathematicae Universitatis Caroline

Miroslav Kozák
Finiteness conditions on EDZ-varieties

Commentationes Mathematicae Universitatis Carolinae, Vol. 17 (1976), No. 3, 461--472

Persistent URL: http://dml.cz/dmlcz/105709

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

$$
17,3 \text { (1976) }
$$

FINITENESS CONDITIONS ON EDZ - VARIETIES

Miroslav KOZAK, Praha

Abstract: We shall study conditions for a given EDZvariety to be locally finite and to be generated by a finite algebra. These two properties are algorithmically decidable. An EDZ-Variety of a finite type is generated by a finite algebra iff it is locally finite and finitely axiomatized.

Key words: Variety, locally finite, generated.
AMS, Primary: 08Al5 Ref. Ž.: 2.725.2
Secondary: 08Ala

The study of EDZ-varieties (varieties of universal algebras with equationally definable zeros) provides us with various counterexamples, suitable in many respects. Moreover, EDZ-varieties are worth themselves of a special attention. Their investigation was begun in [1] and [2]. In the present paper we shall be concerned with the finiteness and generability by a finite algebra. We shall preserve the terminology of [1] (with a slight modification regarding the length of a term). Some terminology and notations will be listed now.

The set of variables is denoted by $X=\left\{x_{1}, x_{2}, \ldots\right\}$. If Δ is a type (i.e. a set of operation symbols), we denote by W_{Δ} the algebra of Δ-terms. For every $t \in W_{\Delta}$ let
$\lambda(t), \lambda^{\prime}(t)$ denote the numbers defined as follows: if t is a variable ${ }_{2}$ or a constant, then $\lambda(t) * \lambda^{\prime}(t)=1$; for $t=F\left(t_{1}\right.$, $\ldots, t_{n_{F}}$) put $\lambda(t)=1+\lambda\left(t_{1}\right)+\ldots+\lambda\left(t_{n_{F}}\right)$ and $\lambda^{\prime}(t)=\lambda^{\prime}\left(t_{1}\right)+$ $+\ldots+\lambda^{\prime}\left(t_{n_{F}}\right)$. In this paper $\lambda^{\prime}(t)$ is called the length of t.

The definition of an irreducible set of Δ-terms, of an EDZ-variety and related concepts, as well as their basic properties, are contained in [1] and repeated in [2].

A variety K of universal algebras is called locally finite if every finitely generated algebra from K is finite. It is well-known (see e.g.[3]) that if a variety is generated by finite algebra, then it is locally finite. The converse is not true (a counterexample could be easily derived from results of this paper).

Let J be an arbitrary non-empty set of Δ-terms. For every positive integer n we define a Δ-algebra w_{n}^{I} as follows: its underlying set is the set $W_{n}-\Phi(J) \cup\{0\}$, where W_{n} is the subalgebra of W generated by $\left\{x_{1}, \ldots, x_{n}\right\}$; if $F \in \Delta$, $t_{1}, \ldots, t_{n_{F}} \in W_{n}-\Phi(J)$ and $F\left(t_{1}, \ldots, t_{n_{F}}\right) \& \Phi(J)$, then we put $F_{W_{n}}\left(t_{1}, \ldots, t_{n_{F}}\right)=F\left(t_{1}, \ldots, t_{n_{F}}\right)$; in other cases we put $F_{W_{n}}\left(t_{1}, \ldots, t_{n_{F}}\right)=0$. It is easy to see that W_{n}^{J} is the $Z_{J^{-}}$ free algebra over $\left\{x_{1}, \ldots, x_{n}\right\}_{0}$

Let us define a set $\overline{W_{\Delta}}$ by $t \in \bar{W}_{\Delta}$ iff t contains no constants and whenever $F\left(u_{1}, \ldots, u_{n_{F}}\right)$ is a subterm of t, then at most one of the terms $u_{1}, \ldots, u_{n_{F}}$ is not a variable; now for every $t \in \overline{W_{\Delta}}$ we define a finite sequence $\sigma(t)$ as follows: if t is a variable, then put $\sigma(t)=\langle t\rangle$; if $t=$ $=F\left(y_{1}, \ldots, y_{n_{F}}\right)$, where $y_{1}, \ldots, y_{n_{F}}$ are variables, then put
$\sigma(t)=\left\langle y_{1}, \ldots, y_{n_{F}}\right\rangle$; if $t=F\left(y_{1}, \ldots, y_{j-1}, u, y_{j+1}, \ldots\right.$ $\ldots, y_{n_{F}}$, where u is not a variable and $\sigma(u)=\left\langle z_{1}, \ldots\right.$ $\left.\ldots, z_{m}\right\rangle$, put $\sigma(t)=\left\langle z_{1}, \ldots, z_{m}, y_{1}, \ldots, y_{n_{F}}\right\rangle$. It is obvious that if $\sigma(t)=\left\langle y_{1}, \ldots, y_{n}\right\rangle$, then $n=\lambda^{\prime}(t)$.

For every $J \subseteq W_{\Delta}$ we define two subsets J^{\prime} and $J^{\prime \prime}$ of J as follows: $t \in J^{\prime}$ if $t \in J$, t contains no constants and no variable has more than one occurence in $t ; J^{\prime \prime}=J^{\prime} n \bar{W}$.

For every Δ-term t let $o(t)$ denote the positive integer defined in this way: if t is a variable or a constant, then $O(t)=1$; if $t=F\left(t_{1}, \ldots, t_{n_{F}}\right)$, then $O(t)=\max \left\{o\left(t_{1}\right)\right.$, $\left.\ldots, o\left(t_{n_{F}}\right)\right\}+1$.

Proposition 1. Let J be an irreducible set of Δ-terms. The variety Z_{J} is locally finite iff W_{1}^{J} is finite and for every positive integer n there exists a positive integer k_{n} such that $\left\{t \in W_{n} ; \lambda^{\prime}(t) \geq k_{n}\right\} \subseteq \Phi(J)$ and
$\left\{F \in \Delta ; n_{F}=n, F\left(x_{1}, \ldots, x_{n_{F}}\right) \notin \Phi(J)\right\}$ is finite.
Proof is easy.
Proposition 2. Let J be an irreducible set of Δ-terms. The variety Z_{J} is generated by a finite algebra iff it is locally finite and there exists a positive integer m such that $\left\{t \in W_{\Delta} ; \lambda^{\prime}(t) \geq m\right\} \subseteq \Phi(J)$.

Proof. Iet Z_{J} be generated by a finite algebra. It is easy to see that Z_{J} is locally finite and that Z_{J} is generated by W_{n}^{J} for some positive integer n. Since W_{n}^{J} is finite, there exists a positive integer m such that $\left\{t \in \mathbb{W}_{n} ; \lambda^{\prime}(t) \geq m\right\} \subseteq$ $\subseteq \Phi(J)$.

Let t be an arbitrary Δ-term of length $\geq m$; it is
enough to prove $t \in \Phi(J)$. There exists a term of length $\geq m$ such that $t \neq v$. If φ is an arbitrary homomorphism of W_{Δ} into W_{n}^{J}, then evidently $\varphi(t)=\varphi(v)=0$. Hence the identity $\langle t, v\rangle$ is satisfied in W_{n}^{J}; since W_{n}^{J} generate J, it is satisfied in Z_{y} and thus $t \in \Phi(J)$.

Conversely, let Z_{J} be locally finite and every term of lengin $\geq \mathrm{m}$ belong to $\Phi(J)$. The algebra W_{m-1}^{J} is finite and it is enough to show that Z_{J} is generated by W_{m-1}^{J}. This will be proved if we derive a contradiction from the following assumption: there exist Δ-terms u, v such that $u \neq \nabla$, the identity $\langle u, v\rangle$ is satisfied in $\mathbb{W}_{\mathrm{m}-1}^{J}$ and $u \notin \Phi(J)$.

Denote by $\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathbf{k}}$ the variables contained in $\mathrm{u}_{\text {. Since }}$ $u \notin \Phi(J)$, we have $k<m$. There exists an automorphism \propto of W Δ such that $\left\{\propto\left(y_{1}\right), \ldots, \propto\left(y_{1}\right)\right\} \subseteq\left\{x_{k}, \ldots, x_{m-1}\right\}$, so that $\alpha(u) \in \mathbb{W}_{m-1}$. Evidently $\propto(u) \neq \propto(v)$ and the identity $\langle\propto(u), \propto(v)\rangle$ is satisfied in Π_{m-1}^{J}. Let φ be the homomorphism of \mathbb{W}_{Δ} onto $\mathbb{W}_{\text {m-1 }}^{J}$ defined as follows: $\varphi\left(x_{1}\right)=x_{1}, \ldots$ $\ldots, \varphi\left(x_{m-1}\right)=x_{m-1}, \varphi\left(x_{m}\right)=\varphi\left(x_{m+1}\right)=\ldots=0$. Evidently $\varphi(t)=t$ for all $t \in \mathbb{W}_{\mathrm{m}-1}^{\mathrm{J}}-\{0\}$ and $\varphi(\mathrm{t})=0$ for all other t.

Since $\langle\propto(u), \propto(\nabla)\rangle$ is satisfied in $W_{m-1}^{J}, \varphi(\propto(u))=$ $=\varphi(\alpha(\nabla))$, i.e. $\quad \alpha(u)=\varphi(\alpha(\nabla))$. This implies $\varphi(\alpha(\nabla)) \neq$ $\neq 0$ and thus $\varphi(\propto(v))=\propto(\nabla)$. We get $\propto(u)=\propto(v)$ and consequently $u=\nabla$, a contradiction.

Proposition 3. Let J be an irreducible set of Δ-terms. Then for every integer $n \geq 1$ the following conditions are equivalent:
i) Z_{J} is locally finite and $\left\{t \in W_{\Delta} ; \lambda^{\prime}(t) \geq n\right\} \subseteq \Phi(J)$;
ii) $Z_{J,}$ is locally finite and $\left\{t \in \|_{\Delta} ; \lambda^{\prime}(t) \geq n\right\} \subseteq \Phi\left(J^{\prime}\right)$; iii) the algebra W_{1}^{\prime} is finite and $\lambda^{\prime}(t)<n$ for all terms $t \in \mathbb{Z}_{I}^{J^{\prime}}-\{0\}$.

Proof. i) \Rightarrow ii). Let $t \in W_{\Delta}$ and $\lambda^{\prime}(t) \geq n$. Evidently there exists a term $s \in W_{\Delta}^{\prime} \quad$ such that $s \leq t$ and $\lambda^{\prime}(s)=\lambda^{\prime}(t)$; since $\lambda^{\prime}(s) \geq n$, we have $s \in \Phi(J)$ by i) and so $\varphi(w)$ is a subterm of s for some $w \in J$ and some endomorphism φ of W_{Δ}. Clearly $w \in J^{\circ}$ and thus $t \in \Phi\left(J^{\circ}\right)$. We have proved $\left\{t \in \mathbb{W}_{\Delta}\right.$; $\left.\lambda^{\prime}(t) \geq n\right\} \subseteq \Phi\left(J^{\prime}\right)$. The rest is easy by Proposition 1 . ii) \Rightarrow iii) is obvious.
iii) \Rightarrow i). Let φ be the endomorphism of W_{Δ} defined by $\varphi\left(x_{i}\right)=x_{1}$ for all $i=1,2, \ldots$.

Let $t \in \mathbb{W}_{\Delta}$ and $\lambda^{\prime}(t) \geq n$. We have $\varphi(t) \in W_{1}$ and
$\lambda^{\prime}(\varphi(t))=\lambda^{\prime}(t)$. There exist an endomorphism ψ of w_{Δ} and a term $u \in J^{\prime}$ such that $\psi(u)$ is a subterm of $\varphi(t)$. Put var $u=\left\{y_{1}, \ldots, y_{\lambda^{\prime}(u)}\right\}$. From the definition of φ it is easy to see that there exist subterms $t_{1}, \ldots, t_{\lambda^{\prime}(u)}$ of t such that $\varphi\left(t_{i}\right)=\psi\left(y_{i}\right)$ and such that $\psi^{\prime}(u)$ is a subterm of t, if ψ^{\prime} is an endomorphism of w_{Δ} such that $\psi^{\prime}\left(y_{i}\right)=t_{i}$. Hence $z \in \Phi\left(J^{\prime}\right) \subseteq \Phi(J)$.

Similarly if $F\left(x_{1}, \ldots, x_{n_{F}}\right) \notin \Phi(J)$, then $\varphi\left(F\left(x_{1}, \ldots\right.\right.$ $\left.\left.\ldots, x_{n_{F}}\right)\right) \in$ will $_{J^{\prime}}$. The local finiteness of z_{J} follows now from Proposition 1.

Corollary. Let J be an irreducible set of Δ-terms and let the variety Z_{J} be locally finite. Then Z_{J} is generated by a finite alger ra iff Z_{J}, is locally finite.

Proof. Follaw from Propositions 2 and 3.
Proposition 4. Let J be a finite irreducible set of
Δ-terms. Suppose that the variety Z_{J} is non-trivial and locally finite. Then Δ is finite and Z_{J} is generated by finite algebra.

Proof. If Δ were infinite, then there would exist a symbol $F \in \Delta \quad\left(n_{F} \neq 0\right)$ such that no term from J contains a subterm of the form $F\left(u_{1}, \ldots, u_{n_{F}}\right)$. Consequently e.g. the algebra $W_{n_{F}}^{J}$ would contain infinitely many terms $t_{1}, \dot{t}_{2}, t_{3}, \ldots$, where $t_{1}=F\left(x_{1}, \ldots, x_{n_{F}}\right), \ldots, t_{n+1}=F\left(t_{n}, \ldots, t_{n}\right)$, a contradiction.

Put $k=2+\max \left\{n_{F} ; F \in \Delta\right\}$ and for every positive integer n put $S_{n}=\left\{t \in W_{\Delta}^{\prime \prime} ; o(t)=n\right\}$.

Suppose first that for every positive integer n there exists a term $t_{n} \in S_{n}-\Phi\left(J^{\prime \prime}\right)$. Put $T=\left\{t_{1}, t_{2}, \ldots\right\}$ and $s=$ $=\max \left\{\lambda^{\prime}(t) ; t \in J\right\}$. Since Z_{J} is locally finite, there exists an r such that $\left.f t \in W_{g} ; \lambda^{\prime}(t) \geq r\right\} \subseteq \Phi(J)$.

Let us define a set T_{s} of Δ-terms by $t \in T_{s}$ iff the following two conditions are satisfied:
a) $t \in \boldsymbol{M}_{8} \cap \overline{\bar{W}_{\Delta}}$,
b) if $\sigma(t)=\left\langle y_{1}, \ldots, y_{p}\right\rangle$ and $y_{i}=y_{j}$ for $i, j \in\{1, \ldots, p\}$, then $i \equiv j(\bmod s)$.

Let us prove that if $t \in T_{s}$ and $\lambda^{\prime}(t) \geq r$, then $t \in$ $\in \Phi\left(J^{\prime \prime}\right)$. We have evidently $t \in \Phi(J)$, so that there exist a term $u \in J$ and an endomorphism ψ of W_{Δ} such that $\psi(u)$ is a subterm of t. It is not difficult to prove (using $t \in T_{s}$) that $u \in J^{\prime}$. Now $u \in J^{\prime \prime}$ is easy and so $t \in \Phi\left(J^{\prime \prime}\right)$.

There exist a number $n \geq r$ and a term $t \in T_{s}$ such that $\sigma(t)=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ for some automorphism \propto of W_{Δ}. Iet us define an endomorphism φ of W_{Δ} in this way:
$\varphi\left(x_{i}\right)=x_{j}$, where $j \in\{1, \ldots, s\}$ and $i \equiv j(\bmod s)$.
Evidently $\varphi(\alpha(t)) \in T_{s}$ and $\lambda^{\prime}(\varphi(\alpha(t)))=n$, so that
$\varphi(\alpha(t)) \in \Phi\left(J^{\prime \prime}\right)$. Similarly as in the proof of Proposition 3 (iii) \Rightarrow i)! it can be proved that $\propto(t) \in \Phi\left(J^{\prime \prime}\right)$ and consequently $t \in \Phi\left(J^{\prime \prime}\right)$, a contradiction with the assumption $t \notin \Phi\left(J^{\prime \prime}\right)$. Denote by n the smallest number such that $S_{n} \subseteq \Phi\left(J^{\prime \prime}\right)$. By Proposition 2 it is enough to show that if $t \in \mathbb{W}_{\Delta}$ and $\lambda^{\prime}(t) \geq k^{n-1}$, then $t \in \Phi\left(J^{\prime \prime}\right) \subseteq \Phi(J)$.

Evidently $n \geq 2$, since Z_{J} is non-trivial; we shall define sets P_{1}, \ldots, P_{n-1} as follows:
we have $t=F_{1}\left(u_{1}^{1}, \ldots, u_{n_{F_{1}}}^{1}\right.$). If $n=2$, put $P_{1}=\left\{u_{1}^{1}, \ldots, n_{n_{F_{1}}}^{I}\right\}$. If $n \geq 3$, then there exists a number $j_{1} \in\left\{1, \ldots, n_{F_{1}}\right\}$ such that $\lambda^{\prime}\left(u_{j_{1}}^{1}\right) \geq k^{n-2} ;$ put $P_{1}=\left\{u_{1}^{1}, \ldots, u_{j_{1}-1}^{1}, u_{j_{1}+1}^{1}, \ldots, u_{n_{F_{1}}^{1}}^{1}\right\}$. Again we have $u_{j_{1}}^{1}=F_{2}\left(u_{1}^{2}, \ldots, u_{n_{F_{2}}}^{2}\right)$. If $n=3$, put $P_{2}=P_{1} u$ $v\left\{u_{1}^{2}, \ldots, u_{n_{F_{2}}}^{2}\right\}$. If $n \geq 4$, then there exists a number $j_{2} \in$ $\in\left\{1, \ldots, n_{F_{2}}\right\}$ such that $\lambda^{\prime}\left(u_{j_{2}}^{2}\right) \geq k^{n-3}$; put $P_{2}=P_{1} \cup\left\{u_{1}^{2}, \ldots\right.$ $\left.\ldots, u_{j_{2}-1}^{2}, u_{j_{2}+1}^{2}, \ldots, u_{n_{F_{2}}}^{2}\right\}$. If we have defined P_{1}, P_{2}, \ldots \ldots, P_{n-2}, put $P_{n-1}=P_{n-2} \cup\left\{u_{1}^{n-1}, \ldots, u_{n_{F_{n-1}}}^{n-1}\right\}$ and let us define terms $t^{(n-1)}, \ldots, t^{(1)}$ in this way:
$t^{(n-1)}=F_{n-1}\left(x_{1}, \ldots, x_{n_{F_{n-1}}}\right), t^{(n-2)}=F_{n-2}\left(y_{1}, \ldots, y_{j_{n-2}-1}\right.$, $\left.t^{(n-1)}, y_{j_{n-2}}, \ldots, y_{n_{r_{n-2}}}{ }^{n}\right)$, where $y_{1}, \ldots, y_{n_{F_{n-2}}}$ are pairwise different variables not occuring in $t(n-1)$, $t^{(1)}=F_{1}\left(z_{1}, \ldots, z_{j_{1}-1}, t^{(2)}, z_{j_{1}}, \ldots, z_{n_{F_{1}}-1}\right)$, where z_{1}, \ldots $\ldots, \mathrm{n}_{\mathrm{F}_{1}}-1$ are pairwise different variables not occuring in
$t^{(2)}$. Evidently $t^{(1)} \in S_{n}$ and $t \in \Phi\left(\left\{t^{(1)}\right\}\right) \subseteq \Phi\left(J^{\prime \prime}\right)$.
Proposition 5. Let J be an irreducible set of terms of a. finite type Δ and let Z_{J} be generated by a finite algebra. Then J is finite.

Proof. Put $k=\max \left\{n_{F} ; F \in \Delta\right\}$ and let n be the smallest positive integer such that $\left\{t \in W_{\Delta} ; \Omega^{\prime}(t) \geq n\right\} \subseteq$ $\subseteq \Phi(J)$. Let us denote by T the set of Δ-terms $t \in W_{n+k} \cap$ $\cap \Phi(J)$ such that $\lambda^{\prime}(t) \leqslant n+k$. Obviously T is finite, so that there exists a finite irreducible subset $S \subseteq T$ such that $\Phi(S)=\Phi(T)$.

Let us prove by induction on $\lambda(t)$ that $t \in \Phi(J)$ implies $t \in \Phi(T)$. If $t \in \Phi(J)$ and $\lambda^{\prime}(t) \leqslant n+k$, then there is an automorphism \propto of W_{Δ} with $\propto(t) \in W_{n+k}$; we have $\propto(t) \in$ $\in W_{n+k} \cap \Phi(J)$, i.e. $\propto(t) \in T$, so that $t \in \Phi(T)$.

Let $\lambda^{\prime}(t)>n+k$ and $t \in \Phi(J)$. There exist a. symbol G and terms $y_{1}, \ldots, y_{n_{G}}$ such that $G\left(y_{1}, \ldots, y_{n_{G}}\right)$ is a subterm of t and every y_{i} is either a variable or a constant. Let z be a variable not contained in t. If we replace precisely one occurence of $G\left(y_{1}, \ldots, y_{n_{G}}\right)$ in t by z, we obtain a new term s. Evidently $\lambda(s)<\lambda(t)$ and $\lambda^{\prime}(s) \geq \lambda^{\prime}(t)-k+$ $+1>n$, so that $s \in \Phi(J)$. By the induction assumption $s \in$ $\epsilon \Phi(T)$. However $s \leqslant t$, so that $t \in \Phi(T)$, too.

We have proved $\Phi(J) \subseteq \Phi(T)$. Since $\Phi(T) \subseteq \Phi(J)$ is obvious, we get $\Phi(J)=\Phi(T)=\Phi(S)$. Since every two irreducible generating subsets of $\Phi(J)$ have the same cardinality, J has the same cardinality as S and consequently J is finite.

Theorem 1. Let J be an irreducible set of terms of a
finite type Δ. Then the mariety Z_{J} is generated by a finite algebra iff $Z_{\mathcal{L}}$ is locally finite and J is finite.

Proof. Follows from Propositions 4 and 5.
For every positive integer p and for every $J \subseteq W_{\Delta}$ we define $S_{p}=\left\{t \in W_{\Delta} ; O(t)=p\right\}$,

$$
U_{p}=\left\{t \in W_{\Delta} ; o(t)=p, \quad \sigma(t)=\left\langle x_{1}, \ldots, x_{\lambda^{\prime}(t)}\right\rangle,\right.
$$

$$
J_{p}=U_{p} \cap \Phi\left(J^{\prime \prime}\right)
$$

Proposition 6. Let J be a finite irreducible set of terms of a finite type Δ and let the variety Z_{J} be localIy finite. If $k=\max \left\{n_{F} ; F \in \Delta\right\}+2, p=\max \{o(t) ; t \in$ $\left.\in J^{\prime \prime}\right\}, r=\operatorname{card} U_{p}, q=\operatorname{card} J_{p}$, then $\left\{t \in W_{\Delta} ; \lambda^{\prime}(t) \geq\right.$ $\left.\geq \mathbf{k}^{p+p-(q+1)}\right\} \subseteq \Phi\left(J^{\circ}\right)$.

Proof. For every $t \in S_{p}$ we shall construct a term $u \in$ $\epsilon \Phi\left(J^{\prime \prime}\right)$ as follows.

If $t \in \Phi\left(J^{\prime \prime}\right)$, put $u=t$. If $t \notin \Phi\left(J^{\prime \prime}\right)$, then for an arbitrary symbol $G \in \Delta$ such that $n_{G} \neq 0$ we define $t_{I}=$ $=G\left(u_{1}, \ldots, u_{n_{G}}\right)$, where $\left\{u_{1}, \ldots, u_{n_{G}}\right\}=\left\{y_{1}, \ldots, y_{n_{G}-1}, t\right\}$ and $y_{1}, \ldots, y_{n_{G}-1}$ are arbitrary varia bles.

There exist a symbol $F \in \Delta$ and variables $z_{1}, \ldots, z_{n_{F}}$ such that $F\left(z_{1}, \ldots, z_{n_{F}}\right)$ is a subterm of t_{1}. Let us replace this subterm by x_{1} and all other occurences of variables in t_{1} which are not contained in this subterm by x_{2}, x_{3}, \ldots, so that the new term t_{1}^{\prime} is such that $\sigma\left(t_{1}^{\prime}\right)=\left\langle x_{1}, \ldots, x_{\lambda^{\prime}\left(t_{1}^{\prime}\right)}\right\rangle$. Obviously $t_{1}^{\prime} \in U_{p}$; since $t \notin \Phi\left(J^{\prime \prime}\right)$, we have $t_{1} \in \Phi\left(J^{\prime \prime}\right)$ iff $t_{i} \in J_{p}$.

If $t_{1} \in \Phi\left(J^{\prime \prime}\right)$, put $u=t_{1}$. If $t_{1} \notin \Phi\left(J^{\prime \prime}\right)$, then for
an arbitrary symbol $H \in \Delta$ such that $n_{H} \neq 0$ we define $t_{\tau}=$ $=H\left(v_{1}, \ldots, v_{n_{H}}\right)$, where $\left\{v_{1}, \ldots, v_{n_{H}}\right\}=\left\{w_{1}, \ldots, w_{n_{H}}-t_{1}\right\}$ and $w_{1}, \ldots, w_{n_{H}-1}$ are arbitrary variable s.

There exists a symbol $E \in \Delta$ such that $E\left(\ldots, F\left(z_{1}, \ldots\right.\right.$ $\ldots, z_{n_{F}}$, ...) is a subterm of t_{2}. Let us replace this subterm by x_{1} and all other occurences of variables in t_{2} which are not contained in this subterm by x_{2}, x_{3}, \ldots, so that the new term t_{2}^{\prime} is such that $\sigma\left(t_{2}^{\prime}\right)=\left\langle x_{1}, \ldots, x_{\mathcal{X}^{\prime}\left(t_{2}^{\prime}\right)}\right\rangle$.

Again $t_{2}^{\prime} \in U_{p}$ and $t_{2} \in \Phi\left(J^{\prime \prime}\right)$ iff $t_{2}^{\prime} \in J_{p}$. If $t_{2} \in \Phi\left(J^{\prime \prime}\right)$, put $u=t_{2}$. If $t_{2} \notin \Phi\left(J^{\prime \prime}\right)$, we can define analogousiy terms $t_{3}, t_{3}^{\prime}, \ldots$.

Put $V=\left\{t_{1}, t_{2}, \ldots\right\}$. We shall show that $t_{i}^{\prime} \neq t_{j}^{\prime}$, if $i \neq j$. In the contrary case let $\langle i, j\rangle$ be pair the first such that $i<j$ and $t_{i}^{\prime}=t_{j}^{\prime}$. We can define terms u_{j+1}, u_{j+2}, \ldots such that for every positive integer m $o\left(u_{j+m}\right)=p+j+m$ and $u_{j+m}^{\prime}=$ $=t_{n}^{\prime}$, where $i \leqslant n<j$ iff $m \equiv n(\bmod j-i)$. If $t_{i+1}=$ $=F\left(y_{1}, \ldots, t_{i}, \ldots, y_{n_{F}-1}\right)$, then we put $u_{j+1}=F\left(y_{1}, \ldots, t_{j}, \ldots\right.$ $\ldots, y_{n_{F}-1}$) and if u_{j+m} is already defined, $m \equiv n(\bmod j-i)$ for some $n(i \leqslant n<j)$ and if $t_{n+1}=G\left(z_{1}, \ldots, t_{n}, \ldots, z_{n_{G}-1}\right)$, then we put $u_{j+m+1}=G\left(z_{1}, \ldots, u_{j+m}, \ldots, z_{n_{G}-1}\right)$. Thus $u_{j+m} \notin$ $\$ \Phi\left(J^{\prime \prime}\right)$ for all m, a contradiction with Proposition 4.

Therefore card $V \leqslant r-q$ and we put $u=t_{n}$, where n is the smallest integer such that $t_{n} \in \Phi\left(J^{\prime \prime}\right)$. Hence it is easy to see that $U_{p+r-q}=J_{p+r-q}$ and $S_{p+r-q} \subseteq \Phi\left(J^{\prime \prime}\right)$. By the proof of Proposition $4\left\{t \in \mathbb{W}_{\Delta} ; \lambda^{\prime}(t) \geq k^{p+r-(q+1)}\right\} \subseteq$ E $\Phi\left(J^{\prime \prime}\right)$.

Theorem 2. Let J be a finite irreducible set of terms of a finite type Δ. Let $s=\max \left\{\lambda^{\prime}(t) ; t \in J\right\}, k=$ $=\max \left\{n_{F} ; F \in \Delta\right\}+2, p=\max \left\{o(t) ; t \in J^{\prime 0}\right\}, r=\operatorname{card} U_{p}$, $q=$ card J_{p}. Then the following conditions are equivalent.
I) Z_{J} is locally finite.
2) $Z_{J^{\prime}}$ is locally finite.
3) $Z^{\mathrm{J}} \mathrm{J}^{\prime \prime}$ is locally finite.
4) The algebra $W_{l}^{J^{\prime \prime}}$ is finite.
5) The algebra W_{S}^{J} is finite.
6) There exists an $n \leqslant k^{p+r-(q+1)}$ such that $\left\{t \in W_{\Delta} ; \lambda^{\prime}(t) \geq n\right\} \subseteq \Phi\left(J^{\prime \prime}\right)$.
7) Z_{J} is generated by a finite algebra.

Proof. 1) $\Rightarrow 6) \Longrightarrow 7) \Longrightarrow$ 2). Apply Propositions 6 and 2.
$3) \Longleftrightarrow 4$). Follows from Proposition 3 .
3) $\Longrightarrow 2) \Longrightarrow$ 1). Trivial.
I) $\Longrightarrow 3)$. By Proposition 4 there exists an positive integer m such that $S_{m} \subseteq \Phi\left(J^{\prime \prime}\right)$. Hence $\left\{t \in W_{\Delta} ; \lambda^{\prime}(t) \geq k^{m-1}\right\} \subseteq$ $\subseteq \Phi\left(J^{\prime \prime}\right)$ and consequently $Z_{J "}$ is locally finite.

1) \Longleftrightarrow 5). Follows from the proof of Proposition 4.

Remark 1. For every finite irreducible sei J of terms of a finite type Δ we have an algorithm to decide whether the variety Z_{J} is locally finite. By Proposition 6 it suffices to decide whe ther $U_{p+r-q}=J_{p+r-q}$, where $p=\max \{o(t)$; $\left.t \in J^{\prime \prime}\right\}, r=$ card U_{p} and $q=$ card \bar{U}_{p}. This process is obvious from the proof of this Proposition.

Remark 2. We know that under the assumptions of Theorem 2 the finiteness of $\mathbf{w}_{\mathbf{J}}^{\mathrm{J}}$ implies the local finiteness of
Z_{J}. If we put $h=\max \{$ card (var t); $t \in J\}$, then it is not true in general that the finiteness of W_{h}^{J} implies the local finiteness of Z_{J}.

For example, let $\Delta=\{\mathbb{P}\}$, where F is a binary operation symbol and let 0 denote the corresponding operation on W_{Δ}. Let L denote the set of all terms $t \in W_{\Delta}$ of the form $t=\left(x_{i_{1}} \circ x_{i_{2}}\right) \circ\left(x_{i_{3}} \circ x_{i_{4}}\right)$ or $t=\left(x_{i_{1}} \circ x_{i_{2}}\right) \circ x_{i_{3}}$ or $t=x_{i_{1}} \circ\left(x_{i_{2}} \circ x_{i_{3}}\right)$, where $i_{1}, i_{2}, i_{3}, i_{4} \in\{1,2\}$. Then there exists an irreducible subset $J \subseteq I$ such that $\Phi(J)=\Phi(L)$; we have $h=2$. It is not difficult to prove (by induction on $\left.\lambda^{\prime}(t)\right)$ that $\left\{t \in W_{2} ; \lambda^{\prime}(t) \geq 4\right\} \subseteq \Phi(J)$ and consequently W_{2}^{T} is finite. However by Theorem 2 the variety Z_{J} is not locally finite, since $J^{\circ}=J^{\prime \prime}=\varnothing$.

References

[1] JEŽEK J.: Varieties of algebras with equationalf definable zeros (to appear in Czech. Math. J.).
$[21$ JEŽEK J.: EDZ-varieties: The Schreier property and epimorphisms onto (to appear in Comment. Math. Univ. Carolinae).
[3] MALCEV A.I.: Algebraiczeskie sistemy, Moskva 1930.

Matematicko-fyzirálnı fakulta
Karlova universita
Sokoloveká 83, 18600 Praha 8.
Ceskoslovensko
(Oblatum 8.4. 1976)

