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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

17,3 (1976)

ON PRODUCTS OF BINARY REIATIONAL STRUCTURES
Véra TRNKOVA, Praha

Abstract: In [2], R, Mc Kenzie considered cardinal
multiplication of structures with a reflexive relation.
He put a problem whether there exists a countable refle-
xive binary structure G such that G is not isomorphic to

G2 while G" is isomorphic to G for a given n>2. We con-
struct such a structure G and give some stronger results

in this direction. For example, any countable reflexive

binary structure can be embedded into 2 © of non-isomor-
phic structures with the above property.

Ke¥ words: Binary relational structure, product,
-cardinal multiplication, representation of semigroups.

AMS: 05C20, 06A10, Q8AQS, 08A10 - Ref. Z.: 8.83

l. Conventions and notation. In the present note, a

structure is always a binary relational structure, i.e. a
pair (X,R), where X is a set, Rc XxX. The cardinality
card G of a structure G = (X,R) is defined as card X. A

structure G is said to be reflexive (or transitive) if R

has this property. We say that G = (X,R) can be embedded
into G’ = (X’,R’) if there exists a one-to-one mapping
@ : X—> X" such that (x,y)e R iff (g(x), ¢(y))eR’. If
¢ is also a mepping onto X’, we say that G and G’ ere
isomorphic and denote it by G=2 G’, Given G = (X,R) and
= (X’,R’), the product Gx G’ is defined as the struc-
ture (XxX’,S), where ((x,x"),(y,y’)) €S iff (x,y)eR and
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(x°,y“)e R°. The operation x (denoted also by T for
infinite collections) is called a cardinal multiplica~

tion in [2]. As usual, we define ¢t = G, 6 = ge @R,

2., Given a structure G, let us define an equiva-
lence ~r on the set of all natural numbers by n~m iff
Gz @™, Clearly, ~ is a congruence with respect to
the addition of naturai numbers. The aim of the present
note is to prove the following theorem.

Theorem. For any congruence ~ on the additive
semigroup of all natural numbers and for any structure G
there exists a set ¥ of non-isomorphic structures such
that card ¥ = 2% and

(a) for every H e ¥ , H'=x H® iff m~ n,

(b) for every H ¢ 3¢ ?

card H =% - card G and G can be embedded into H.
Moreover, if G is reflexive or transitive or antisymmetric,
then every H & ¥¢ has the same propex;ty.

Note. A countable structure H such that H'~z H® iff
m~ n is constructed in [4]. In the present paper, we use
the methods of [4] and a modification of some methods of
£3].

3. Let S be a semigroup. Denote by g£S (see [11)
the semigroup of all subsets of S, where the operation is
defined by

A-B=fa-blaecA, beB3.
Denote by N the additive semigroup of all non-negative
integers and by o the semigroup of all functions £: B —
~» N where the operation + is defined by (£ + g)(n) =
~ 514 -



= f(n) + g(n) for.all ne N. Denote by () the function
fe w with £(n) = 0 for all ne N, Following [4], a semi~
group S is called (xo s 4%, Jmembeddable iff there exists
a monomorphism ¢ : S—>gf W such that @ ¢ ¢« (s) and

card ¢ (s) =%, for all se&S, the monomorphism ¢ is

called an %, —embedding.

4., Iet (S,+) be a commutative semigroup, € a class
of structures. We say that a mapping r: S—=> € 1is a

representation of S by products in € if r(s; + 82) is
always isomorphic to r(s;)xr(s,) and r(s,) is not iso-

morphic to r(s,) whenever s ¥ 85.
Given a structure G, denote by <% (G) the class of all
structures H such that card'H = ¥, card G, G can be em-
bedded into H and H is reflexive or transitive or antisym-
metric whenever G has this property. In the rest of the
paper, we prove the following proposition.

Proposition. For every structure G and for every
(#, , ¥, )-embeddatle semigroup S there exists a-set R of
representations of S by moducts im <% (G) such that
card R = 2% and for every s, s’e S, r,r’eR , r$r’,
r(s) is not isomorphic to r“(s”).
The theorem follows from this proposition because every

semigroup on one generator is (.xo,-xo)-embeddable, by [41.

5. Denote by L the set of all odd neN.
Lemma. For any (.s,, %, )-embeddable semigroup S the-
re exists an &, -embedding « : S—> g2 ¥ such that for

every s eS there exists f; € @(s) with £,(n)%0 for all
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neélL,:

Proof. For any £e N define a set Apc N by

gEA, iff S/L is constant and g(2n) = f(n) for all
ne N,
If : S»glNN is an «_-embedding, then ¢ defin-
ed by

g?(s) = -‘FemeJ-(/b) A

is an ~-}fo-embedding with the required property.

6. Let Q be a subset of ¥ such that

(1) if qeQ, then q is one-to-one, q(L)c L and q(n) =
=n for all ne N\ L.

(2) card Q = 2%°

(3) if q, q‘e Q are distinct, then neither q(L) ©
c q’(L) nor q’(L)ec q(L).
If fe¥, put Lo ={neL|f(m)403.
Denote by P the set of all pairs (f£,q), where fe N’\{OZ,
q € Q. Define an equivalence = on P as follows. i

(£,9) = (£°,q°) iff £(n)= £°(n) for all ne N\L and
there exists a bijection d” of L, omto Ly, such that
qm)=q (d(m)), £(n) = £°(d"(n)) for all ne L.

Observation. a) For any q€Q, (flq)g (£5,q) imp~

lies fl = fz.
b) If £(n)#0 for all ne L and (£,q) = (£°,q°) for

some £°, then q = q°.

7. Let a structure G = (X,R) be given, let us suppo-
se XnN = ¢, For any neNput 2, =§0,...,n + 4%, X, =
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=XvZ,, R, = Ru4£(z,z)| ze2,3 v 4 (0,n +3),
(op+4)3ud{(i,j)i,je€0,0cem+2%,i4j53 00
vily,x)| xeX, ye40,n + 3, n+ 433 .
Put G, = (X ,R ).

Observation., If G is reflexive or tramitive or en-

tisymmetric, then Gn has the same property.

8. Given p = (£,q)& P, denote G_ = yE(n)

[- 4
b mTl—-o (Gq(n)
(where by GJ we mean ({03, £(0,0)3 ) for all neN). De-

- _ ¥ £(n)
note Gp = (Xp,%). Thus, )SD "»:.110 (xq(n)) . Denote by
T the set of all (i,n), where neN, i = 1,...,f(n). For
p
= > e -

any t = (i,n)e Tp, denote by ar y: Xp—-> xq(n) the t-th
projection. Put

T, =-ixe% [, (x) = O except a finite number of
t’8 3,

Sp = (pr YP)ABT-”

B, (Yp,Sp).
For every t = (i,n)e Tp denote by B, the set of all erp
such that a,,(y) = O whenever t':;-;t and or,(y) e £0,...
eeeyaln) + 2%,

9. lemma. 4B, \ teTp? is just the set of all sub-
sets B of Ip such that

(<) 1if x,yeB then either (x,y)e Sp a (y,x)e Sp;
(B) if xeB and (y,x)e Sps
(2*) B is maximal with respect to (o) and (B3);
() card B23.

then ye B;

»

Proof. Each B, clearly fulfil (oc),( ) and (47,
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let us prove (4). If BoB, and B fulfils (ec),(3), then
either B = B't or B contairs x not in Bg. Denote by a the
point of By such that ary(a) =1, arg(a) =0 for all
‘s€ Tp\{t} . let us recall that t = (i,n), p = (f,q).
Since x is not in B,, either ar,(x)e Xuiq(n) + 3,

q(n) + 43 or ay,(x)40 for some t'e T\{t3 . In the
first case, neither (a,x) nor (x,a) is in Sp which contra-
dicts (¢ ). In the second case, define b by .. (b) =

= o, (x), rg(b) =0 for all se T\ Lt"? ., Since (b,x)e

€S, bis in B, by (@ ). But neither (a,b) nor (b,a) is

D?
in Sp'
Let Bpr fulfil (oc),(fs),('f),'(d‘). We have to show that
BcB, for some teT'p. Then, by (), B = By, Thus, let us
suppose that there exist x; € B, arti(xi)*o for i = 1,2,
ty# ty. Define y; by "rti(yi) = ""ti(xi)’ Iely;) =0
for all seT\{ t;3 . Since (y;,x;)e Sp, y;€B, by ().
But neither (y,,¥y,) nor (¥5,¥7) is in Sp, which contradicts
(e¢). Consequently, there exists t = (i,n)e Tp such that
3re(x) = 0 for all xeB and all se Tp\{ t3. Let us sup=-
pose that art(x)qu{q(n) + 3, q(n) + 43 for some xeB.,
Define a,b,c by . (a) = q(n) + 3, ory(b) =q(n) + 4,
w.(e) =1, wgla) = & g(d) = ar_(c) =0 for all se T\
N4t3.By () and (J7), two of the points a,b,c are in -

B. But this contradicts ().

10. lemma. Let p,p ‘e P be given., If Hp_’z Hp,, then

Proof. Dencte p = (f,q), p° = (£7,q°). Let us recall
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that the functioms q, ¢ are one-to-one. By 9, for eve-
ry neN, the pair (f(n),q(n)) is characterized as follows.
£(n) is the number of distinct subsets B of Hp satisfying
(<),(3),(3), and card B = q(n) + 3. This is preserved
by an isomorphism. Hence, f£(n) = £'(n) for all ne N\ L.
If ne L and £(n)# 0, then there exists unique o'(n)e L
such that (£(n),q(n)) = (£°(0"(n)), q“(d"(n))). Clearly,
Jdv: Lo —> Lf,.is a bijection.

11. Iet us recall that a cardinal sum 6f a collection
1(X ,Rg) | v e A% of structures is a structure G = (X,R)
defined as follows. X =°‘L‘JA {ec? x X, , (x,y)eRiff
(x’,y)eRyg , x= (00,x"), y = (c¢,y’) for some oc e A,
We denote G by e(.%A G, where Go = (X ,Ryc)e

Proof of the Proposition. Given pe?P, put Kp =
= k?ﬂ K, , where every K, is a structure isomorphic to Hp
(see 8). Let (S,+) be an (&, %,)-embeddable semigroup,
let cp: (S,+)—> gl M be an ¥, -embedding such that for
every se€ S there exists f, & c@ (s) with £, (n)%0 for all
nel (see 5). For every q €Q define

rele) = qzo.) Kee,q)e

We show that R={rql qeQ % is the set of representations
of (S,+) by products in € (G) with the required proper-
ties. Clearly, rq(s) € €(G) for all seS, qeqQ.

a) First, we show that for 2% 9y rql(sl) is not
isomorphic to I‘qz(sz) for any s,,s,& S. Let us suppose
r (sl)_':'. rqz(sz). The structure rql(sl‘) contains a compo-

q3
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. . ) It must be isomorphic to &
nent isomorphic to H(felqu

component of v, (s,)- This component is isomorphic to

da
(s,). By 10, (£, ,q-) = (g,q,).
H(g’qz) for some g € ¥ \S, y 10, 8,791 »do
Hence q; = gy, by 6. '

b) Now, we prove that rq(sl) is not isomorphic to
rq(sp) whenever s #85. We have @(sy) =+ @ (sy). Let us
suppose cg(sl)\q’(sz)*ﬂ and choose f in this set. The
structure rq(sl) contains a component isomorphic to H(f,q)'
ILet us suppose rq(sl)z rq(sz). Then rq(sa) contains a com~
ponent isomorphic to H(f @ By the definition of Tqr this

. ?
component must be isomorphic to H(g’q) for some g & q(sa).
By 10, (f,q)= (g,q). Hence £ = g, by 6, This is a contra-
diction.

c) Now, we show that for every qeQ, s,,s,€S,
ry(sy + 8p) is isomorphic to rq(sl)qu(sz). We have
sy +8,) =42 +2,| £ e o), £, e g(sy)8 . Since
every rq(s) contains %, isomorphic copies of any of its
components and since H(fl’Q)x H(fZ'q) is isomorphic to
H-(f1+f2’q) for any £ e @(s;) and T & ¢ (s,), v (8;) x

* rq(sz) is isomorphic to rq(sl + s?).

12. Concluding remarks. One can see that the Proposi-
tion may be generalized to higher cardinalities. In [4],
(. ,#)-embeddable semigroups are defined, where 444 ,
are infinite cardinals, ## £ 4 < 2™ | Given a struc-
ture G and an (4% ,.s )-embeddable semigroup S, we can con~

struct 2* non-isomorphic representations of S by mroducts
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in the class (G, ) of all structures H such that

card H = #m . card G, G can be embedded into H and H is

reflexive or transitive or antisymmetric whenever G has

this property. By [5], every commutative semigroup S is

(. ,2™)-enbeddable with 4% = 4, . card S, so it has

mm
22 non-isomorphic representations by products in

€ (G,2").

m

21

£31

£4]

[5])

P.

R.

v.

v.

v.
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