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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

17,3 (1976) 

ON PRODQCTS OF BINAEI RELATIONAL STHJCTURES 

¥era TRNKOVX, Praha 

Abstract: In L2l, R. Mc Kenzie considered cardinal 
multiplication of structures with a reflexive relation. 
He put a problem whether there exists a countable refle­
xive binary structure G such that G is not isomorphic to 

G while G11 is isomorphic to G for a given n? 2. We con­
struct such a structure G and give some stronger results 
in this direction. For example, any countable reflexive 

binary structure can be embedded into 2 ° of non-isomor-
phic structures with the above property. 

Key words: Binary relational structure, product, 
cardinal multiplication, representation of semigroups. 

AMS: Q5C20, 06A10, 08A0?, 08A10 - Ref. 2.: 8.83 

1« Conventions and notation. In the present note, a 

structure is always a binary relational structure, i.e. a 

pair (X,R), where X is a set, RcXxX. The cardinality 

card G of a structure G = (X,R) is defined as card X. A 

structure G is said to be reflexive (or transitive) if R 

has this property. We say that G « (X.R) can be embedded 

into G* « (X',R') if there exists a one-to-one mapping 

eg : X — > X ' such that (x,y)€ R iff ( <y(x), g>(y»€ R*. If 

cf is also a mapping onto X', we say that G and G' are 

isomorphic and denote it by &~ &'. Given G = (X,R) and 

G' = (X',!'), the product GxG' is defined as the struc­

ture (XxX',S), where ((x,x'), (y,y')) € S iff (x,y)eRand 
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(x%y')e R'. The operation x (denoted also by "IT for 

infinite collections) is called a cardinal multiplica­

tion in 121. As usual, we define G » G, Gn = G* Gn. 

2. Given a structure G, let us define an equiva­

lence r>j on the set of all natural numbers by n/vi iff 

Gn-2-t Gm. Clearly, /v is a congruence with respect to 

the addition of natural numbers. The aim of the present 

note is to prove the following theorem. 

Theorem. For any congruence ™ on the additive 

semigroup of all natural numbers and for any structure G 

there exists a set 36 of non-isomorphic structures such 

that card 3d = 2 ° and 

(a) for every H e 3fc f H
01--* H?1 iff m ^ n, 

(b) for every Hicfe 

card H ~ .#• card G and G can be embedded into H. 
o 

Moreover, if G is reflexive or transitive or antisymmetric, 

then every H & *3t has the same property. 

Mote, k countable structure H such that fifta* H11 iff 

iA/n is constructed in E41. In the present paper, we use 

the methods of £41 and a modification of some methods of 

£33. 

3. Let S be a semigroup. Denote by g£S (see £1.1) 

the semigroup of a U subsets of S, where the operation, is 

defined by 

A » B s { i * i U e A , b e B J . 

Denote by M the additive semigroup of all non-negative 

integers and by 1ST the semigroup of all functions f; K — * 

—*• H where the operation + is defined by (f + g)(n) * 
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= f (n)'+ g(n) for all neK, Denote by © the function 

N 

f 6 N with f (n) = 0 for all n€ N. Following £4], a semi­

group S is called (-K1 ,-K0 )-embeddable iff there exists 

a monomorphism <y : S — > g^ N such that © ^ 9? (s) and 

card cp(s) =.4&a for all seS, the monomorphism <y is 

called an &0 -embedding. 

4. Let (S,+) be a commutative semigroup, 5? a class 

of structures. We say that a mapping r: S—*• *t is a 

representation of S by products in % If -̂ (Sj + Sg) is 

always isomorphic to rts-jjxr^) and i*(s-,) is not iso­

morphic to r(s£) whenever s.j4- s2* 

Given a structure G, denote by Sf (G) the class of all 

structures H such that card H « &Q* card G, G can be em­

bedded into H and H is reflexive or transitive or antisym­

metric whenever G has this property. In the rest of the 

paper, we prove the following proposition. 

Proposition. For every structure G and for every 

(#0 , 4#0 )-embeddahle semigroup S there exists a-set SU of 

representations of S by products im ^(G) such that 

card % = 2 ° arid for every s, s e S, r, r e % , r+r , 

r(s) is not isomorphic tor'(s'). 

The theorem follows from this proposition because every 

semigroup on one generator is ( Mof&0 )-embeddablef by £41. 

5. Denote by L the set of all odd neN. 

Lemma. For any (̂ ro , &Q )-embeddab3e semigroup S the­

re exists aa J£0 -embedding cp : S — ^ g £ ^ such that for 

every seS there exists fQ e 9 (s) with fs(n)4=.0 for all 

515 



n e L. 

Proof. For any f € N** define a set A^c NH by 

gekp iff ̂ /^ is constant and g(2n) - f (n) for all 

neN. 

If Y : S-—>-gXN is an 4«c0 -embedding, then cp defin­

ed by 

^(s) =^6yu) ** 
is an -Ka-embedding with the required property. 

6. Let Q be a subset of Br such that 

(1) if qeQ, then q is one-to-one, «j(L)c L and q(n) = 

= n for all neN\L. 

(2) card Q » 2*° , 

(3) i f qf q '€ Q are d is t inct , then neither q(L) c 

c q'(L) nor q'(L)c q(L). 

If f€ H*, put 1^ = 4 n e L J f (n)% 0 1 . 

Denote by P the set of a l l pairs ( f , q ) f where f e i r \ i d H , 

qeQ. Define an equivalence s on P as follows* 

( f » q ) s ( f ' , q ' ) i f f f(n)-»- f'in) for a l l ncNXLand 

there exists a bisection. <f of 1% o.oto L̂ # such that. 

q (n)«q ' (<r(n)) f f(n) « f'(cT(n)) for a l l n e %. 

'Observation* a) For any q€ Qf ( f - j q ) s tfgtQ) i---P-

l i a s f, = fg* 

b) I f f (n )#0 for a l l ne L and (f ,q) ss ( f ' f q ' ) for 

some f', then q - q V 

7. I»et a structure 0 s (XfR) be given* l e t us suppo­

se XnH - 0. For axjy neN put Z^ « f 0 , . . . ,m + 4? f X^ -
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= XuZ n , f̂  = R u t ( M ) I z e Z ^ J u -C (0,n + 3 ) , 

(0,n + 4)5 u -C ( i , j ) | i , j e-C 0 , . . . , n + 2 } , U j ? u 

u-t(y,x) | x e X , y e 4.0,n + 3 , n + 45$ . 

Observation. If G is reflexive or transitive or an­

tisymmetric, then G has the same property. 

8. Given p = (f,gJeF, denote Gp .* ^JT Q (G q ( n))
f ( n ) 

(where by G^ we mean (-CO} , -C(0,0)J ) for all neN). De­

note Gp « O-p.Sp). »»»• X^ « J J 0 CX q ( n ))
f ( n ). Denote by 

T the set of all (i,n), where neN, i = 1,...,f(n). For 

any t » (i,n)e fpJ denote by trt ^: X p — > \(ny tlle *•"*-* 

projection. Put 

Y - 4xe .X | ffAx) * 0 except a finite number of 

t's$, 

Sp* ap , sp ) . 

For every t * (i,n)e 1 denote by B^ the set of all yeX 

such that ^ # ( y ) = 0 whenever t'-fst and 3rt(y) e €0,... 

...,<l(n) + 21 . 

9. Lemma, -CB+ \ t e f j is just the set of a n sub-
" * P 

s e t s B o f L such tha t p 

(«c) i f x , y e B then e i ther (x ,y)e Sp or (y,x)e Spj 

(/&) i f x e B and ( y , x ) e S p , then y e B ; 

(3*) B i s maximal with respect to (oc) and (/&)$ 

{(f) card B £ 3 . 

Proof. Each B+ clearly fulfills (oc),( /I) and (<r), 
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let us prove (y ). Xf BoB t and B fulfils (<*),(/3 ), then 

either B « B^ or B contains x not in Bt# Denote by a the 

point of Bt such that *JTt(a) » 1, ara(a) - 0 for all 

seT \-CtJ . Let us recall that t » (i,n), p = (f,q). 

Since x is not in Bt, either art(x)e Xu-tq(n) + 3, 

q(n) + 4$ or jrt,(x)4-0 for some t's T \ * tf . In the 

first case, neither (a,x) nor (x,a) is in S which contra­

dicts («c). In the second case, define b by 3Tt„(b) = 

= 5Tv(x), ^ s(b) = 0 for all ee T\€t'f • Since (b,x)e 

6 S , b is in B, by (£}. But neither (a,b) nor (b,a) is 

inS p. 

Let B e l f u l f i l - ' (8t) , ' ( /3) f (^Mcf*) , -Ve have to show that 

B c l ^ for some t e T p . Then, by ( y ) , B « B^. Thus, l e t us 

suppose that there exis t x^fcB, tnt
t(x^)4^0 for i « 1,2, 

t - j + t g . Define *£ by *rt,ty±) s ^ t . ( x i ^ ^ s t y i } " ° 

for a l l e€TN«f t ^ } . Since ( y i , x i ) e S p > y . e B , by ( / J ) . 

But neither (y^Z^ noT ^ 2 , y l ^ i s *"* Sp» w l l i c n contradicts 

(cc) . Consequently, there ex i s t s t• » ( i , n ) e T such tha t 

3Ts(x) s 0 for a l l x e B and a l l 86T \ { t ? . Let us sup­

pose that 4TtCx>€ X*-r£ q(n) + 3 , q(n) + 4? for some x e B . 

Define a,b,c by 0Tt<a) * q(n) + 3 , 3T t(b) * q(n) + 4, 

3r t (c) * l , 2r&(&) * 3T s(b) » 3 r s ( c ) «• o for a l l s c T \ 

S < t J • %• (fi) and (oH, two of the points a ,b ,c are in 

B. But th i s contradicts (cC). 

10* Lei-ma. Let p,p#€ P be given. I f H cz H ,t then 

Probf. Denote p = ( f , q ) , p* -* ( f ' ,q ' )« , Let us r e c a l l 
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that the functions q, q' are one-to-one. By 9, for eve­

ry neN, the pair (f(n),q(n)) is characterized as follows, 

f (n) is the number of distinct subsets B of H satisfying 

(<-C),(fi ), ( T ) > and card B = q(n) + 3 . This is preserved 

by an isomorphism. Hence, f(n) = f'(n) for all n e N \ L . 

If n e L and f(n)4.0, then there exists unique oT(n)e L 

such that (f(n),q(n)) « (f'(<T(n)), q'(<T(n))). Clearly, 

cT: 1^—> If is a bisection. 

11. Let us recall that a cardinal sum of a collection 

4-CX^ , ^ ) | * e A . } of structt^es is a structure G = (X,R) 

defined as follows. X =- J^A -Coo? K X^ , (x,y) e R iff 

(x',y')e R^ , x = (oo,x')f y = (o&,y') for some oo e A. 

We denote G by S . G, where G^ » (X^jR^). 

Proof of the Proposition. Given peP, put IC » 

= - S L X--, where every K-̂  is a structure isomorphic to H 

(see 8). Let (S,+) be an (4*0,-#j0)-embeddable semigroup, 

let eg : (S,+) -—• g£ N^ be an «#0-embedding such that for 

every se S there exists t m eg (s) with fs(n)4-0 for all 

n e L (see 5). For every q eQ define 

rq(3) %efUl %,q)* 
We show that (&-«•(,r [ qmQi is the set of representations 

of (S, + ) by products in f̂f(G) with the required proper­

ties. Clearly, rq(s) s <£(G) for all se S, qcQ. 

a) First, we show that for qi-#q2> r Q
 vSi^ *s no* 

isomorphic to r. Ug) for any s-jjŜ fi S. Let us suppose 

r (s^)2i r (s2^# T3ie structure r (s-,) contains a compo-
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w It must be isomorphic to a 
nent isomorphic to &i£B~ >°*1; 

* 2
( 

component of rn_(e2>. ^ i s comPonent -« isomorphic to 

H,„ „ > for some g tf «=f(82). -fr 10, (fg .q^ S ( g ,< l 2 ) . 
VSt"2f 1 

Hence q, » q2, by 6. 

b) Now, we prove that r (s-̂ ) is not isomorphic to 

r (s2) whenever s.14=s2» We have <y(s,) 4s <$>(s2). Let us 

suppose <$ (s1)^<?(s2)4riZJ and choose f in this set. The 

structure ** (s-.) contains a component isomorphic to H,^ v. 

Let us suppose v {B^)CL r (s2). Then
 r
Q(s2) contains a com­

ponent isomorphic to H,^ *. By the definition of r , this 

component must be isomorphic to Ht % for some g e op (s2). 

By 10, (f,q)s (gfq.). Hence f == g, by 6. This is a contra­

diction. 

c) Now, we show that for every q e Qf & ,s2e S, 

rq^sl + s2^ i s -vsomorphic to rQ(si)*2q(s2). We have 

cp (s1 + s2) = -t f-̂  + f2 I t^ € c? (s-ĵ ), f2 € <y(s2) 1 . Since 

every r (s) contains -#0 isomorphic copies of any cf its 

components and since H/^ q ) x H(f q) *s isomorphic to 

H(f +f q) fQr any fl e y^3!? and f2 e <¥ vs^' rq'sl* x 

X r (s2) is isomorphic to
 rq(si + s 2 ^ # 

12• Concluding remarks. One can see that the Proposi­

tion may be generalized to higher cardinalities. In T43, 

(.>*w-,^)-embeddable semigroups are defined, where AH* , •«-. 

are infinite cardinals, «m. & <*u 4s. Z^44^' . Given a struc­

ture Q and an (/*#£,.-**«-)—embeddable semigroup S, we can con­

struct 2 non-isomorphic representations of S by products 
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in the class C6(Q$*H') of all structures H such that 

card H » 44t> . card G, G can be embedded into H and H is 

reflexive or transitive or antisymmetric whenever G has 

this property. % C53, every commutative semigroup S is 

(/H*.>2*
H")-embeadable with 4>H* « tf0 # card S, so it has 

2 non-isomorphic representations by products in 

^ ( G , 2 ^ ) . 
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