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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

17,3 (1976) # 

A NOTE ON NORMAL TOPOLOGICAL FUNCTORS AND EXTENSIONS OF 

TRANSFORMATIONS 

Pavel PTiK, Praha 

Abstract: The notion of normality can be variously 
generalized for the functors F: k—*• Top from a category 
k into topological spaces (by means of the separation of 
the closed subfunctors of F by the open ones, the exten
sions of transformations of a closed subfunctor of F on 
the entire F, etc.). The discussion of the definitions 
is presented. The notion of the weakly filtered category 
is introduced and used (a category is weakly filtered if 
for any two morphisms oc-̂ : < r — > r/j, au^i <y—^^2 "tiiere 

are morphisms (3^: <r^—>pf fi^: v^—>P with tS-̂  06-̂  = 

= H^-
Key words: Topological functor, natural transforma

tion. 

AMS: 18A99, 54D15 Ref. 2.: 2.726.2 

The notion of normality in topological spaces can be 

naturally transferred into the topological functors. The

re are some possibilities for the definition. We may call 

a functor F: k—:>Top 

SEP-normal if any two disjoint closed subfunctdrs of 

F can be separated by two open subfunctors, 

TU-normal if any natural transformation of a closed 

subfunctor of F to the constant functor CR on reals can be 

extended on the entire F, 
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TO~-normal if any two disjoint closed subfunctors of 

F can be separated by a natural transformation, 

OB-normal if ¥& is a normal topological space for 

all objects & e k. 

This note brings a discussion of the relations bet

ween the present definitions (if a category k is given). 

Evidently, TU-normality is* equivalent to TO -normality. 

The other notions are not the same. It is proved that TU-

normality is equivalent to SEP-normality iff the category 

k has the following property: If 06^: <y—> ir., cc^i 

• 0ff—-> (̂2 are morphisms of k then there are morphisms 

(i^i <^—> p, /32: ^2—^ p such that fix00! ~ 1
/32oC2, 

We call such categories weakly filtered (as a weaker no

tion than the one of the filtered category studied in Mac 

Lane V book [ ML3) • 

For the small categories we have as a cor.a?olary that 

1. if k is weak3y filtered and F is SEP-normal then 

colim F is a normal space and 2. the functor colim: 

: Ck,Set3—> Set preserves monomorphisms iff k is weakly 

filtered. 

The notion of OB-normality is completely different 

from the other ones. The situation is illustrated by exam

ples. 

I would like to thank V. Trnkova* who called my atten

tion to this question. She also started the examination of 

similar problems (see [KT3). For further investigation of 

analogous sort, see [AR3. 

Notions and results. We shall deal with covariant 
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functors F: k — > Top from a category k into the category 

of topological spaces. A functor F-.: k — > Top is a sub-

functor (closed subfunctor, open subfunctor) of F if for 

each morphism cc: <r—y p, F^c is a subspace (closed 

subspace, open subspace) of F<r and F-̂ oo is the do

main-range restriction of Foe- . A subfunctor F-, is in

version preserving (or IP-subfunctor) if x£F-,cr when

ever F cc (x) e F-, <y^ for a morphism oo : <r — > cr-*. 

Two subfunctors F-̂ , Fg of F are separated if there 

exist two disjoint open subfunctors G-,, Gp such that F^c. 
c ®1* *2 C G2* ^ aay two ^isJ0-^1^ closed subfunctors of F 

are separated we call F SEP-normal. 

Following the topological situation, we can call a 

functor F: k—>Top Tietze-Urysohn normal (TU-normal) if 

it holds: Given a closed subfunctor P-, of F and given a 

natural transformation f-,: F-,—i* CRJ C R being the con

stant functor on reals, then there exists a transformation 

X : F — ^ C R which is an extension of t .̂ Of course, any 

TU-normal functor is SEP-normal. 

Definition: A category is called weakly filtered if 

for each pair of morphisms oC^: <r:—> or^ oc2l °*—* °^2 

there are morphisms (3-,: <T^—> p, /Sp l Co,"-"* P with -

(31o61 = /32,«2.. 

Theorem: Let k be a category. If k is weakly filter

ed then any SEP-normal functor F: k — > Top is TU-normal. 

If k is not weakly filtered then we can construct a SEP-

normal functor F: k— y Top which is not TU-normal. 

Proof: Suppose k is weakly filtered and F: k—*Top 
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i s SEP-normal. Then any two d i s jo in t closed subfunctors 

of P may be separated by two open (or closed) IP-subfunc

tors of F. Indeed, i f F-_, F2 are two closed subfunctors 

of P then they are separated by open subfunctors % , H2 

and putting 

G.<r =-£xeP<r | Fo&(x)eH-|P for some 06 : cr—->pj 

G2<r = i y c P c r | F<-c(y)eH2p for some 06: <r —> p ? 

we obtain two open IP-subfunctors with G - ^ F j , G2o Fg. We 

have to show that G^, G2 are d i s j o i n t . Suppose zeG-^cr n 

AG^cr* . Then there are morphisms cc^i cr—> <r^3
 oC2ji 

: Kr-^'cr^with Foc1(z)eE1o'lf FoczCz)e H2 <r2* Choose 

l ^ l : °"i"~* P> $zl <r2'^> p s u c h t h a t ^ l 0 0 ! S /^20C2* 

Then F /&, P a t ^ z ) = F/32FoC2(z) a n d t he 1 ^ 0 1 * 6 H.jpriH2p4*j2J 

- a contradiction. 

If we want to separate F.,, F 2 by closed IP-subfunc

tors we f i r s t take the open IP-subfunctors G ,̂ G2 and put 

KjCr * P<r - G^a . Then we separate K-,, Fj by open IP-

subfunctors G£, G2 and put K^^ = F<r - G£<r # The func

tors ICp Kg wi l l do. 

According to the Urysohn's procedure, i t suffices to 

prove that for any dis joint closed subfunctors P^, F-, of P 

and for any transformation if : F-,u F2—> R with 'fcr'F-, =- 0, 

t?* F2 = 1 there is an extension on F. But we can adopt the 

standard method - the role of the open se t s in the sequen

ce from one closed se t to the other play the open IP-sub

functors of F (the induction runs by the observations on 

the s t a r t of t h i s proof). 
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Conversely, suppose k i s not weakly f i l t e r e d . So the 

re exist morphisms oo.^: or—y cr^, aC^t <r—> (Y2 such 

that fix00!^ (^2oC2 f o r a ^ m o r P f t i s m s fiif ft2* L e t F : 

: k—> Set be the functor Horn ( <r, - ) , i . e . F p =-Coo ) cc : 

: cr—p p l # Endow each F p with the discrete topology and 

define F-,, F2 such that 

F-jp ss -[ 00 : (T'—> p [cc - f̂ 00! f o r s o m e & : ^ 1 — - * P S 

F2p = - C o ^ : < y — > p l a C = /3oC2 for some (3> : a^—* P $ • 

The functors F-. f F2 are d i s jo in t (closed, open) sub-

functors of F. Consider the transformation X ; F.,u F2 —> 

—*-• CR such that ^'F-^ = 0, ^ # F 2
 = 1 # I f ^ : F—-> CR i s 

an extension o f t ' then 0 = m'^ ( oc^) = ^ ( i d ^ ) = 

= 12 ^ iot"^) s 1 - a contradict ion. 

Remark. A monoid (as a category) i s weakly f i l t e r ed 

i f f the intersect ion of each pai r of i t s l e f t ideals i s non-

void. 

A par t i a l ly ordered se t (as a thin category) i s weakly 

f i l t e r ed i f f every i t s component i s directed. 

Proof i s easy. 

One more definition of normality may be in place: A 

functor F: k—> Top is called OB-normal if F<r is a normal 

space for all objects tYe k. As the following examples 

show, the situation here is less nice than that in the Theo

rem before. 

Statement 1: Let k be a finite category. If k is weak

ly filtered then any OB-normal functor F: k—.> Top is TU-nor-

mal. 
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Proof is not difficult. 

Statement 2: Let k be a partially ordered set. If 

every component of k has the greatest element then any 

OB-normal functor F: k—»• Top is TU-normal. If a compo

nent of k has not the greatest element then we can con

struct an OB-normal functor F: k—*> Top which is neither 

SEP-normal nor TU-normal. 

Proof: Evidently, the first part holds. The second 

part will be proved in two steps. First, let co be a li

mit ordinal and let Ord^ be the set of all smaller ordi

nals than co * Define an OB-normal functor F: Ord^ — > 

— > Top as follows: Given a moronism oc: <r —-> p (i.e. 

<y 4* p) then F<r » Fp « Ord^ v t o } . The topology is 

discrete on the subspace Ord^ and a base of the neigh

bourhoods of CO is formed by the sets (T = -i <r & 

£ Ord^ \c> q5 uA<o 5 . The mapping Foo : F < r — ^ Fp is 

defined such that if q < <r or q > p then Foc(q) = qf 

Foe (q) = o otherwise, .further define subfunctors F-*, F2 

such that F-^ * i O } , F2<r * ico J for any <re k! Fi

nally, define a transformation t? : - * 2 u 5 2 — ^ CR such '*&*& 

^/yi * °> t'^2 s 1# ^ is easy to checlc that ^ h a s n o 

extension on F. 

Let k - (X, 4s)m We can assume that (X, 4s) is connec

ted and directed. Take a maximal chain (X',-£) in (Xf^) 

with respect to the ordering .& . The chain has a cofinal 

subset (T, .£) equivalent to the set Ord^ for a limit or

dinal <0 \ % the previous observation, we have an OB-nor

mal functor F: (Y,*-*)—>Top, a closed subfunctor F* of F 
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and a transformation %': F'—>> CR which cannot be exten

ded on F. We extend F on the entire (X, ^ ) . Let oc: <r—+> 

—> p (i.e. er ̂  p) and <r, peX, Then put Hoc= F/3 

where ($ : c'—^p', <r', p'eX and or' (and similarly 

p') is determined by the following condition: or' is the 

smallest element of (X,.-») among those which are not smal

ler than <r . It is easy to check that H is a functor 

and the proof is finished in fact. 

Statement 3: Let k be a group. If k has a regular 

cardinality then there is an OB-normal functor F: k — * 

— > Top which is not TU-normal. If k is finite then F: 

: k—*Top is OB-normal iff it is TU-normal. 

Proof: Let G be an infinite group with regular car

dinality. Take a well-ordering -< of G such that all se-

quents have a smaller cardinality than G. We shall define 

a functor F: G-—> Top. Put F(G) « HxH -4n,n? where H is 

a space on the set G v -£ n J such that the topology of H 

is discrete on G and a base of neighbourhoods of n is for

med by the sets (Tn « -i g£ G | g^hj u 4 n ? . If geG then 

we define F g such that Fg(x,y) * (gx,y) if x+n, Fg(n,y) = 

= (n,y). Clearly F is an OB-normal functor (Fg is continu

ous as k has a regular cardinality). Define a closed sub-

functor F' of F such that F' * F-jU F2 ^s^e I^G ~ 

-•(Cn,g) \ g*Gj and FgG•« 4 (gt») | geG ? . One can 

check that the transformation %>': F'—> Cfi such that 

t F, « 0, t/Fg s 1 has no extension on F.. 
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