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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

17,4 (1976)

ON COMPACT SPACES WHICH ARE UNIONS OF CERTAIN COLLECTIOES
QF SUBSPACES OF SPECIAL TYPE

A.V, ARHANGEL'SKII, Moscow

Abstract: Let X be a compact and X = Xlu Xz, where
both Xl and X2 are metrizable. Then X need not be metriz-

able itself but X must be a Fréchet-Urysohn space and for
every Ac X the cellularity number c¢(A) is equal to the
weight w(A) (Theorem IX.10)., If X is a compact and X =
= where each Ye ¥ is & developable subspace of
X then the tightness of X is countable (Theorem I.12).
Together with these results we prove a few useful general

lemmas. The following problem is formulated (see II.13).
Let X = X v X, where X is a compact and X;, X, are metrig-

able, Is it true then that X is an Eberlein compact?

Key words and phrases: Tightness, density, Fréchet-
Urys space, sequential space, free sequence, i ~weight,
network, deveiopable space, uniform base.

AMS: 54425, 54D30 Ref. Z.: 3.961

This article, with exception of the last remark, was
written before the Prague Topological Sympoaium 1976 and

served as a basis for the author’s talk at the symposium.

O.Conventions and notations. Throughout the paper

the word "space" will mean “topological regular Tl-apace‘.
"A compact" is a bicompact Hausdorff space. The symbol

will always denote a cardinal number. We shall write =%t
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for the first cardinal which is greater than T . Car-
dinals are identified with the corresponding initial or-
dinals, We put N' =4{1,2,0003N500. % o If X is a space,
AcX and v is a cardinal, then c.£ (A) is the closure of
& inX, cl, (A) = U4cl (M): McA and M|/ < ~3% and
seqel (A) ={xeX: there exists & sequence {fa,: ne w3
in A converging to x} . A transfinite sequence § ={ix_:
t < TYE of points in X is called "a free sequence”
(see [31), if for each (R < =%  the following condi-
tion holds:

edixg:w <Bin chixe: B€c <t} =g, Then
o% is called "the length” of § and we write: £(§) =
= @+ ., The set of all free sequences in X of the length
¥+ will be denoted by F, (X). A space X is called"a
7~ =-compact®™ if for every chain C of non-empty closed
sets in X such that |C | £ % we have: NC=%g. We also
consider the following cardinal-valued invariants: tight-
ness t(X) of X, demsity d(X) of X, cellularity number
(Souslin number) c¢(X) of X, pseudocharacter v (X) of X,
character 2 (X) of X and with some others. Their defini-
tions one can find in [5). The cardinality of a set X is

denoted by | X! .

§ I. General results

I.1. Definition. ILet § ={x : < < r+3 e F (X)
snd § = {xjtxc<zrie F (X)), We put §'< ¢
if (el dfx :Becc<vrIINdx : R tx <)o

24X : L e <wv*y . We shall write §, £ §, , if

- 738 -



§.< §, or §, = §, . Obviouay, if §'< §’
and §° < § , then §”< € - one only has to remark
that always ¢.£, (¢£, (A)) = c £, (A) (seel31).

I.2. Lemma, If €, €€ F.(X) and §'< § , then
ef, (§’) is closed in cL, (§) and ¢ £, (F)\ §' is
closed in cl,a,(g INE .

Proof. let yecl, (5 ) and yecL(c £ (§")). Then
yeelix :oc < oc*} for some x*< v+, Then
yéeldx_: oo* £ oc < ©+%  and hence ydc £ {xz:
: & oc <t+i.Thus ye el fx, 3 oc <ac* 3§ . We con-
clude that yee £, (§'). 48 § and §° are discrete sub-
spaces of X, £ is open in c.£, (§) and §’ is open in
¢£ 4 (§°). From this the second conclusion of the lemma
follows.

I.3. lemma. If § € 5, (X) andMccf, (§),
Bl 2 v ,z2 %, , thenMcel(£x,: x <ax*3 ) for
some oc* < o+ .

This agsertion follows trivially from regularity of
et .

I.4. lLemma. If X is & T -compact and Ac X then Y =

= ¢L,(A) is also a T -compact.

Proof. Let C be a chain of non-empty closed sets in
Y such that |IC|l = = . For each Fe C let us fix c(F)eF.
We put M = fc(F): Fe C3. Then (M| £ ]Cl& =~ and McY.
Hence c¢.£ (M)c ¢ £, (Y) = Y. As c(F)€ MnF, the family C* =
={Pnckl M: Fe C?} is a chain of non-empty closed sets in
c¢£ (M) and, hence, in X. As lC’| £[C] £ = we can con-

clude that NC % J . But NCcNC. Thus NC+ P .
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I.5. lemma. Iet X be & <T-Compact, 8% < x+, v =
Z ¥, and suppose that for every 8 < O* a free sequen-
ce ?e*-{xi:oo<ft:+§e£g(x—) is given in such
a way that if 8’ < 6" < 6* , then §gu < §, . Then
there exists a free sequence §gs =432 : o« < 2+3 in
X such that §,.< §, forall 6 < 6%,

Proof. For all 6 < 6* and o« < ©+ we put
F£= (cle{xg tw s B < 'b""”\-i.xg:oc cB<zt3.
We shall define a transfinite sequence 7 =«fy°°: x<T+5§
in X. let & < =t . Assume that for every cc < & a
point y_ € X is already defined in such a way that y. €
€el,(§,). In view of the lemma I.3, there exists o«c*<
< =+ such that ¥, : ¢ < &£ §c clixZ:ix < <*}?
and & < oc* < o+ ., The smallest ¥ , for which the
two conditions above are satisfied will be denoted by
@ (X). Clearly X £ @ (&)=< ©+. We put 6’=4r;(z, :
:6 < 06%3 ana $, = NT . By I.4, ¥
compact. By 1.2, each ch(&a) is closed in Ff? <
= ¢ then ci,v-(xg t (X)) e p<Try =

) is a 'ze-
yo ¥ B ®
-{xg i @(X)< B< z+3 is a discrete = -compact (by
I.4) space.of cardinality =+ - which is & contradiction.
Hence F8 . % @ for eve e @* . Thus C i hain of

@) ry -< . Thus C is a chain
non-empty closed sets in the 7 -compact P‘:cg) « It follows
that Q& + g, We choose y, to be any point of & -
Then yy € ¢ £, (§;). Lot 7 =4y, : < < ~+3c X be
defined in eccordance with the rule described. If o« <

o o

£B< ¥ ,then ()< @ (R) and yp < Foid © Fgce) -
Hence c{yp : ¢ ¢ p < &%} c cf P;(‘) «  On the
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other hand, {y,: 3 < ¥ c cE{.xz,,: B=<wkE)i.as §,
is a free sequence in X, we have: c { xz tB< @(xl)in
n cll‘c;(a‘)= #. Hence cl{yﬂ iB<x3ncldiy,:
tcé B <wtf=ff - ie.  is a free sequence in X.

Let us show that 7 < §, for each 8 < O%, 1f
<« &<t thenyﬂe@ﬂc}"cgcp) and < £ @(x)&
£ @ (3) . Hence I;recmc?c:(()cf': and foyp: < <3<
<z+3cF8- (clc{.xg:océ(3< z+3)I\ {.xg tc s A<t}
for each o~ < =+ . By I.1, this means that 7 < §, .
Thus fe* =7 is the required free sequence in X. ILemma
I.5 is proved.

I.6. Definition. For & cardinal 7= |, ﬂg'r is the
class of all spaces X satisfying the following condition:
if Y is a discrete subspace of X and | Y| Z =% then the-
re exists ZcY such that | Z| = ¥+ and Z is closed in X.

I.7. Proposition. If Y (F,X) £ © for every closed

set F in X then X € €, .
Proof. ILet Y be a discrete subspace of X such that

1Yl = %, Then the set F = c£(Y)\Y is closed in X, Hen-
ce there exists a family < of open sets in X such that
ll« © and Ny =F. From YA F = @ it follows that
Y= U4 X\UInY: Uey3 . Aslplemw<erse Y],
there exists U* e o such that | YA (X\U*) [z 2zt .
Clearly, every subset of the set Y n (X \U¥) is clo-
sed in X. Thus any 2c YN (X \ WU*) such that 121 = =+ is
what we look for.

I.8. Corollary. If X is a space with countable deve-~

lopment (i.e. a Moore space) then X e ‘i,bf for every 'rzs'o.
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I.9 'Corolla_rx. « If X is hereditarily Lindel8f then
Xe €, foreach = = 4, .

I.10. Proposition. ILet X be a 7 -compact and Xc Y.
Then either t(y,M) < = (see [41) for each yeY and each
Mc X such that ye c€ M, or there exists in X a free se-
quence of the length =¥ .

Proof, Assume that Ac X, y¥e Y and y*e c£(A) \
NeL, (A) (here and in what follows the both closures are
taken with respect to ¥). Put A* = c¢ 2, (A)n X, Obvious-
1y, y*¢ c£, (4%). Let 7 be a family of open sets in ¥
such that g1 « # and Ny 3 4¥ . We shall prove
that(ﬂg“)n)\.*:{:ﬁ-?oreach%ég’ we £ix an
open set V), in Y such that y¥eVycecl(Vy)e U . Put
yl=del(Vy)sUeyd. as lg'l&elzl e , wecan
write: ¢'= {F :oc <7 3. Obviously E,n A*=% & and
c¢L (B,n A*)ay* . We are going to prove that c2 (N4 Fy :
tow £ 33A A¥)34y¥ for each B £ T . Suppose that
this is true for every 3 < [3* , for some f3* <« « .
Then C =iN{E, :oc £B3IAnA*: B3 < B*3 is a chain of
non-empty closed sets in the space A¥ , each of which con-
tains y* in its closure. Let Oy* be an arbitrary neigh-
borhood of y¥ in Y. Clearly every element of C intersects
the set Fp, ncl(0g*) . Thus ¢ =4{N4{F, :caBIn
A Fo Nnel (0y*) A A*: B < 3*3 is a chain cf
non-empty closed sets in A* , By I.4, A* is a < -compact.
Hence, in viewof (C'l < IP*|l 2 =, NC'=+ g .

We have: NC'= N4E_: ¢ £ B*3 A A* 1 el (0y*) .
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As the space Y is regular and Org«* is any neighborhood
of y*, it follows that c£ (N{F :ac < B*5n A¥)agy*.
The transfinite induction is complete. Put @3 = = into
the last formula. We obtain: N{F, :x £ ¥ }n A¥+ 4 .
Hence Ny A A¥ + 7 . Now we can apply the funda-
mental lemma 4 from [3] to Y,y* and A*, It follows that
there exists ;i.n Y a free sequence § of the length =7t
such that § c A* . But A*c X. Hence § e Fp (X).
I.11. Proposition. Let X be & T -compact, & = #,
end X = ULX_:x <3, where X, € €,  for every
o < ¥ . Then there exists no free sequence in X of the
length =+ .
Proof. Let us assume that §={x : x<=z¥ie F (X).
For each o £« ¥  we shall define 7 e 7, (X) un-
der the following restrictions: 1) if «’< «” = = then
Nen < Tegr 5 80d2) if x <, 7 € F (X)) and
M € Mo then I nX ol 2 & for each oc‘< ¢ .
We put 7, = § . Let B3* < = and assume that
Ny € Fp (X)) is defined for every < < B* in such
a way that the conditioms 1) and 2) are satisfied for all
these oc . If 3% is a limit ordinal we choose N+ to be
any 7 e Fr (X)) such that 79’ <7, for all « < %
(see I.5). Suppose now that (B3*¥ has an immediate prede-
cessor oc* . If there exists mo 7 € F, (X)  such that
M < T ek amd 1A X_ | = =+ | then we choose
1p* to be any 7' e F (X)) such that n'< Nk (see
I.5). Let us assume now that there exists 2 € %, (X) such

that 7 < 7 _, and ln A X 1=t We fix such 7.
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The set 7 N X 4  is discrete, l9 N X_, | = =+ ana
X x € €0 . Hence there exists a set 2cn N X
closed in X_, such that | Z|= =+ . Obviously there ex-
iste ;'€ Fp, (X)  such that 9’ = Z and elememts in 7’
are ordered in the same way as they are ordered im 7 . By
I.5, there exists 7" e F (X) such that 2" < 7’ .
Then @" A X 4= f and if 9" < 7" , then 9" n
NX, u =@, Indeed 7" <« 2" implies that "2m< 7’
from which it follows that n"c c£ ()N n'c X\ X . -
We put 75y = 7" ., Clearly the conditions 1) and 2) are
satisfied for all oc £ 3% . Thus a tramnsfinite sequence
{9 ez vt F (XD satisfying the conditions 1)
and 2) exists. Let us fix it. Comsider 7, . From 2) it fol-
lows that |9, nX_ |4 ¢ for every o« < = . Hence
Igen X1 £ v, But 9,.=m,n X implies that

Iy X1=Ilg, 1=+ ., The contradiction we arrived at

means that &, (X) = g.
Now we are ready to formulate and prove one of our main

results.

I.12. Theorem, If X is a T -compact, = = ¥, and
X=UL{X i <3, where X € ¢, for every < <
< T ,then t(X) « ~ , In particular, if X is a compact
and each X is developable then t(X) € = .

Proof. We just apply I.1ll and I1.10 where Y = X,

I.13. Definition. A space X is called T -bounded if
for every AcX, such that |4l « v , ¢£(A) is compact.

I.14. Theorem. Let X be & 7 -bounded comple tely regu-
lar space, T =z ¥, and X =U{X_ :x <7} where
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X, e €, Pfor every o < ¥ . Then X is compact and
t(X) £« = .

Proof. In view of I.12 we only have to prove that X
is compact. Let us fix a compact extension Y of the space
X. let ye Y. From 1.10 it follows that t(y,X) £« = . Hence
yec£ (A) for some AcX such that |A| £« =, A8 X is © =~
bounded, c£ (A)n X is compact., Hence ¢£ (A)n X is closed in
Y. This implies that ¢ £ (4) = c£ (A)N X, Thus yec£ (A)c X,
i,es X = Y. We conclude that X is compact.

I.15. Notations. S, is the class of all spaces X
such that X = U{X o < © % where X, € ¢, for eve-
ry o« < © ., By M, we denote the class of all X such that
X=U{Xy,: x < © 3 where X, is metrizable for every
< < .We put M*=U{M, :meN*3 .

Straight from I.12 we get

I.16. Theorem. If X is a k-space, T = %, and X €
€ S, then t1(X) <« = .

I.17. Observation. If X is a space of point countab-

le type and X e M#o , then X is first countable at a
dense set of points,

This follows trivially from the fact that every compact
is of second category.

The following assertion provides us with additional

strong information on the structure of compacts belonging

to M‘O .
I.18. Theorem. If X is a 2 -compact, T = ¥, and
Xe M #, » then the following conditiors are pairwise

equivalent: a) ¢(X) £ © ; Db) a(X) £« = ; c) for every
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YcX such that ¢ £(Y) = X, a(¥Y) ¢ = ; &) rw (X) & © ;
e) there exists Yc X such that ¢£ (¥) =X and w(Y¥) =« =~ .
Proof. It is well known that e) => d) =>c¢) =>Db) =
== a), It remains to show that a)=>e)., Let X = U4 Y;:
: ieX¥* ¥ where each Y; is metrizable. Assume that
c(X) £« ® ., Put p=fUcX : U is open in X, U + @ and
U n Y; is dense in 9 for some icN' % .
As X is of second category, 9 is & Jr-base of X. There
exists a maximal disjoint subfamily 4* of the family g .
Then ¢£ (Ug*) = X. We have: lg*| £ ¢ (X)<£ ., For
each 2% & g-* we choose ieN such that U n Y; is den-
se in U eand put Z; = U NN Y;. As U is open in X,
c(U)gceX) « © . A8 Zy isdense in U , c(Zylcec(U)s
£ @ . As Zy is metrizable, it follows that wiZg,) =
=clZylc x .Weput 2=U42,:Ue p*2. A8 g* is
disjoint, U N Z =Z, . Hence Z, is open in Z for every
Ueqg*. let By be a base of Zy such that | By | =
=w(Zy)er, Then B=U4By: Uegrs isa base
of the space Z and | Rl £« 2.t =1, Hence w(Z) £ = .
Obviously, c¢£(2) =cL( Ug* = X,

§ 2. The case of two summands
II.1. Example. lLet T z %, We fix a discrete space
A, such that | A | = @ , Denote by A% the compact ex-

tension of A, by one poirt: A% =A_ u{§, 3. Then AX is
the union of two discrete subspaces. Hence A} e M, .On
the other hand, AX is not first countable at the point

§,c if © > %, - Thus not every compact belonging to
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.MQ is metrizable.

In this paragraph we study the compact elements of
MQ in greater detail,

II.2. lemma, Iet = =z ¥, , X is v -compact, X = X, v
ux2 and assume that the following conditions are satis-
fied for i = 1,2: a) if AcX; and |Al < @ then the
closure of A in X; has a network ¢; such that ly5l<2;
b) y(X;) <« © . Then for every Ac X; such that [A]l £ <
and for each zeck (A)nX,, F(z,cL(4)) < = .

Proof. We put 4; = c£ (A)n X; and fix zeA,. It fol-
lows from a) that there exists a family o of sets in A
such that |y l< », Uy o AN {3 and c £(P)z
for every P € o7 . We put 7, ={cL(A)\ ¢c(P): Pe o~ $ .
Then)f}';,)élg*léf: and (NF)n X ciz3, as
Y (z,A,) £ y(z,X) < ¢, tht;re exists a family 9’:2 of
open sets in c£ (A) such that |3, ) 2 © and (NF,)n
nX, = 1z2%. Let ¥ = ??‘:, v 3'72 . Then obviously |y | £ <
and Ny =423 . As all elemnts of '37' are open sets in
cf (A), it follows that y(x,cL(AN < IF| £ « , But
cZ () is T -compact. Hence 4 (z,c£ (A< y(z,cl(AN £ «.

II.3. Proposition. ILet X be an ., -compact and X =
= Xv X, where X;, for each i = 1,2, satisfy the following
conditions: 1) X € €, ; 2) if AcX; end |Al £ 4,
then the closure of A in X, has a countable network;

3) w(X;) £ %, . Then, for every AcX, c£(A) =
= geqel(seqel (A)) (and hence X is sequential).
Proof, By Theorem I.12, t(X) £ ¢, . We fix AcX and

xech (A). There exists Bc A such that |B| £ &, and
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xeck (B), We put B; = Bn X;, i = 1,2. Then either x €

€ cl(Bl) or xec £(B,). It is sufficient to consider the
case when xec £ (By). There are two possibilities: I) x &
e X5, and II) x3X,. If I) holds, we apply the lemma II,2
with A = B, and conclude that 7§ (X,c2 (By)) £ #, . Hen-
ce x€ seqcl (Bl)c seqcl (A). It remains to consider the
case IT): x¢X,. Then xeX;. We put C = cl (Bl) and C, =
=C nxz. It is necessary to distinguish the two following
subcases: II;) c£(C;)% x and II,) ¢ (C;) 3 x. Let

ck (C;) $ x. Then there exists a neighborhood Ox of x in
X such that c¢£ (C;)nc£(0x) = #. Then F = c£ (0x)NC is
an ¥, -compact and Fn X, = . Hence Fc X,. From xc F and
P(F) £ y(X;) £« #, it follows then that x (x,F) < #,.
We have: Bj = 0xnB,CF md xe c£(B]). Hence there exists
a sequence in B]'_ converging to x. As B]'_c BcA, we conclu~
de: xe seqck (A) - and the proof in the case IIl) is comp-
lete. Suppose now that II,) holds: ck (C}) ® x. As t(X) <

£ #o , there exists a countable set C{c C; such that

1
xeeck (C{). Then we have: CTc X,, lefl 2 w, and xeX,
xeck (Cf ). Hence we can apply the lemma II.2 (where X;
plays the role of X, and X, plays the role of xl). It fol-
lows that 7 (x,cd (ci“ )) £ s, . Thus xeseqc (CF).
From B,c X; and |B)| £ %, it follows by lemma II.2 that
c,e(Bl) is first countable at all the points of the set
c£(B)nX, = C;. Hence Cfc Cyc seqeL (B,), so that x ¢

€ seqc £ (Cf )c seqc . (seqec £ (Bl))c seqc £ (seqc £ (A)).
Proposition II.3 is proved.

Remark, The spaces xl and xz above need not be se-
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quential, .

II.4. Progosit:f.on. Let X = Xlu XZ, where all the
conditions from II.3 are satisfied. In addition, let us
assume that for each AcX; such that |Al<£ &, the clo-
sure of A in X; is a Fréchet-Urysohn space, i = 1,2. Then
X is also a Fréchet-Urysohn space.

Proof. By Theorem I.12, t(X) £ ¥, . Hence it suf=-
fices to show that c.£ (A) = seqc£ (A) for every countalle
AcX. Assume that xe c£ (A)\ seqel (4). Let xe Xy. As X
is Fréchet-Urysohn, seqef (AnX;)DecL(AnX,)nX,. From
x $ seqcL (A)o seqe £ (ANX;) it follows now that x $
$cl(ANnX;), Thus xe c£ (AnX,). We have: AnX,c X, and
lAmf‘le £ ¥, . From Lemma II.2 we conclude now that

% (x,cL (An X.E)) £ &, . Hence x¢ seqe (Anxz)c seqc £ (A)
-~ in contradiction with x€c£ (A)\ seqc £ (A). Proposition
II.4 is proved.

II.5. Proposition. Ilet = = &, . Assume that X is
a T-compact and X = XU X,, where, for each i = 1,2, the
following conditions are satisfied: 1) X; e ¢, ;2) if A;c
€X; end [A;] € &  then the weight of the closure of
A; in X; does not exceed T ; 3) if Y;jc X; then either
there exists a discrete subspace Z;c Y; such that | Zil =
= ¥+ (i.e. 8(Y;)> =) or the density a(Y;) of ¥, is
not greater than <z .

Then for any AcX such that Al < 2, w(c£l(4)) 2
<= T .

Proof. Put Ay = AnX;, X; =cf(A;) amd X, = X N
AX;, i =1,2, By 2), w(¥;) & « ,We have: cL(4;) =
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= ¢l ('xvi) = x; - i.e. g is dense in 11'. As X; is regu-
lar it follows that, for every compact ¢ c i;,

2 (8,x) = (P, KIew®) 2« v, weput X; = X\ T,
Let us show that d(Xj) « @ (demsity of X] does not ex-
ceed © ).

Assume the contrary. Clearly, X;cX\X;. Then, by 3)
and 1), there exists a closed in X; discrete set Djc X
such that ID;|1 = =+ . Put $; =cL£(D;)\D;. Then §;
is closed in X and hence @; is a 7 -compact. We obser-
ve that D;c Xz and X; is closed in X. Hence ¢.c q. As
D; is closed in Xj, it follows that §-&” Xj = #. Thus

Q’. c 'i;_. Hence w( &)< w(i‘i) £ T . We can conclude now
that & is & compact. It follows that £ (., Xj) & = .
There exists a family 77, of open sets in x; such that
Ny;=@; maly;ler. From $; A D; = P we obtain
now that Dy = U4D;\%U: % € 93 § . We have:lg;lex
and | Dl =zt>a , Tus (D;\N%;l=x* for some
U; e oy As DN, = cRD N\ U; ,the set \U; s
closed in ¢£D; and hence D; \ U; is closed in X. But,
as X is x -compact, there exists no closed discrete set in
X of cardinality =% Th; contradiction we arrived at
implies that d(!;) < @ ., Clearly, if i = 1 then gc X,
and if i = 2 then Xjc X;. In a1y case it follows from 2)
and 4(Xy) € T that w(Xj) € = . Thus c£(A) = i’iu'xvzu
U X{u X, where w(z_‘_) ¢r ,w(X)e T ,i=1,2, The
space ¢ (L) is < -compact, as X is « -compact. From the
theorem on the addition of weights proved in [7] (see al~

so [8]1) it follows now that w(c. (A)) 2 © .
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We can now formulate ard prove the main results of
this paragraph.

II1.6. Theorem. If X is an ¥, -compact and X = Xu
U X, where xl and 22 are spaces with uniform base then
a) X is Fréchet-Urysohn, and b) for each countable Ac X,
w(cl(r)) £ %, -

Proof., The assertion follows immediately from II.5.

II.7. Corollary. If X is a separahle s, -compact
and X = xlu X2 where X; and Iz are spaces with uniform ba-
se then w(X) « &, (and hence X is a compact).

II.8. Theorem. Let X be a compact and X = xlu 12 whe-
re X, and Xz are spaces with uniform base. Then a) X is
Fréchet-Uryschn, and b) for every AcX, w(cl (A))<|k] . In
other words, X is an exact compact in the sense of [6].

Proof. One should only observe that the conditions of
I1.5 are satisfied by X, X, and X, for all T = ¥, .

II.9. Example, Franklin’s compact (see [8], or [1])
is the union of two separable locally metrizable developab~
le spaces while it is not Fréchet-Urysohn. It does not sa-
tisfy b) in II.8 as well, Hence II.6, II.7 and II.8 are not
extendable to the class of all developable spaces.

Observe that the case when X; and X, are metrizable is
covered by II.6, II.7 and II.8. But in this case the asser-
tion II.7 can be considerably strengthened.

II.10. Theorem. If X is & < -compact and X = XU X,
vhere X, and Xz are metrizable then the following condi-
tions are equivalent: 1) c¢(X)£ © and 2) w(X) £ © .

Proof., This follows from I.18 and II.5.
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II.1l. Corollary. If X is a compact and X = X, U
U X, where X; and X, are metrizable then c(A) = w(A) for
every Ac X (and X is Fréchet-Urysohn by II.8).

I1.12, Example. The same Franklin’s compact (see
II.9) is the union of three discrete spaces while it is
separatle and not metrizable and not Fréchet-Urysohn.
Hence none of the results II.6, II.7, II1.8 and II.10 can
be generalized to the case of the union of three metriz-
able spaces. That is the real reason why we had to con-
sider the case of two summan&s separately. We shall treat
the peculiarities of the case when a compact is the union
of finitely many metrizable spaces in our next paper. We
would like to conclude with the following problem, motiva=-
ted by II.8 and II.10.

II.13. Problem. Is it true that every compact which
can be represented as the union of two metrizable subspa-
ces is an Eberlein compact?

I also want to formulate here the following problem
which was posed in my talk at the Prague Symposium, 1976
and was recently solved by A. Ostaszewski (in the affir-
mative).

II.14. Problem. Iet X be a compact such that X e
€ A@“o . Is it true then that X is sequential?
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