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ON CONVERGENCE OF THE FOURIER SERIES OF A CONSTRUCTIVE
FUNCTION OF WEAKLY BOUNDED VARIATION
P. FILIPEC, Preha

Abstract: The paper contains the proofs of some cri-
teria for the convergence of the Fourier series of a con=
structive function. In particular, the theorem about the
convergence of the Fourier series of a constructive func-
tion of weakly bounded variation is proved.
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Introduction. One of the main results of my thesis
[9] is proved in the paper. On the basis of the results of
the work [9] all the basic theorems of the theory of trigo-
nometric Fourier series hold in constructive analysis. It
is possible to prove most of these results by means of the
methods closely related to the methods by which they are
proved in classical mathematics. This, however, does not
hold for the theorem on the convergence of the Fourier se-
ries of a constructive function of weakly bounded variat-
ion. In classical mathematics this theorem is proved by
means of the theorem on the representation of a function

of bounded variation as the difference of two non-decrea-
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sirg functions. In the constructive analysis this does
not hold [7] for constructive functions of weakly bound-
ed variation and therefore it was necessary to find a dif-
ferent method'of the proof.

Theorems 1 - 4 are constructive analogues of well-
known theorems of the classical theory of Fourier series

(see e.g. [81).

Fundamental definitions. Normal algorithms [3] will
be called simply "algorithms". If the algorithm Of is ap-

‘plicable to the word P, this fact is denoted by ! (L (P)
~and the result of the application of the algorithm ad to

the word P is denoted by (L (P). The Markov principle is
used: For every algorithm (£ and every word P,

M 1 AL (P) >t (L (P) always holds. All assertions are to

be understood in accordance with the rules of the construc-
tive interpretation of propositioms [4].

Natural and rational numbers as well as FR-numbers
are defined in [5]. We shall often use the term “point" in-
stead of "FR-number". An algorithm f is called a construct-
ive function of a real variable (or only function) [61 if
it satisfies the following two conditions:

1) For any FR-number x, if !f(x), then f(x) is FR-
number;

2) Vxy (1£(x) & x =y If(y) & £(x) = £(y)).
Any constructive function is continuous in any point in
which it is defined [61. We shall use (with or without
strokes and subscripts)

m, n as variables which vary through natural numbers,

- 756 -



J,k,£2 as variables which vary through integers,
a,b,c,t,u,v,X,y,xy, 3,9 , 9, 4, § as variables which
vary through FR-numbers and

f,2,h as variables which vary through functions.

A set will be understood as a set of FR-numbers, i.e.
the word M of the form A p ¥(p), where p is one of the
variables for FR-numbers and & (p) is a one-parameter
formula [4] with the parameter p. For this set M we define:
g€l = 3 (q), where q is also one of the variables for
FR-numbers. We denote by R the set of all FR-numbers. let
M, and M, be two sets. We define: M, M, S V x (xelMy=
> xe€Ml,). The set A x (a€x¢b) (where a and b are ex-
pressions denoting FR-numbers and & <b) is called a seg-
ment; we denote this set by aanb. We denote: avb =
= Ax (a<x<b),

A function f defined on the segment aA b is called a
function of weakly bounded variation on aAb if there ex-
ists a FR-number u such that

‘.';:E‘:' [£(x;) - £x;_4)] €« u for a€x, < x;) < ...
vee € X, € b
We understand the notions of sequence of FR-numbers and
functions, their convergence, polygonal functiom on a seg-
ment and uniformly continuous function on a segment in the
usual (constructive) sense. We denote:

X, 53X S VYedn, Vnman, = lxn-xl<2"m).

The concept of lebesgue integrability and lebesgue
integral of a comstructive function is defined in [1]l. We

derote £ (f,aab) if £ is defined on the segment aab and
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f is Iebesgue integrable in aA b, One can construct an al-
gorithm which for every a and b (where a< b), every func-
tion £ such that & (f£,aADb) produces on the basis of the
sufficient information about the function £ (this informa-
tion will be denoted by [£] ) and on the basis u,ve aab
the value of the Lebesgue integral of the function £ from
u to v. The value of the Lebesgue integral of the function
£ from u to v will be denoted by f:[f(x)] dx.

Let us note that if f is of weakly bounded variation
on aAb, then f is Lebesgue integrable on aA b (see [ 11,
Theorem 1).

The following lemmas can be proved easily immediately
from the definition of the Lebesgue integral. (In Lemm 1
we denote the composition of the functions f,g by fo g and
the inverse function of the function g by g_l.)

lemma 1., Let ¢ and 4 be FR-numbers, let ¢4 0 and let
g be such that Vx (g(x) =c-x + 4d). Then

(x) L£(f,aab)=L(fog, nin (g_y(a),g_;(b))a max
(5_1(3),3_1(b)))
g:f(ﬂr)

3'-1(") [£(c. x + d)] ax

4
and f [£(x)ldx =e¢.
@

if one side in (x ) holds,

Lemm 2. Let &£ (f,aab), let £ be periodic with pe-
riod u and let u< b - a. Then for every & and B (whe-~
re x<p ), £L(f,¢ca ) and for every FR-number c,

[relex= 7 T2 ax.

The functions sin and cos and FR-number J can be defined
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by means of the well-known power series so that they have

well-known properties especially those we shall use.

Fourier series
Definition. let &£ (£f,0a2%). Then obviously there
exist the sequences -iak'iaizo and {bk?x";:l such that

2
(1) Vi (k202 = 7 [ [2(x)- cos kxdax) &

1 237 .

&k>0>by = = [ [ £(x)- sin kx1 ax)).
These sequences will be called the sequences of the Fou-
rier coefficients of the function f£; &, b will be cal~-
led the Fourier coefficients of the function £;

we shall denote by snfl the functions such that

m
() Vx(si(x) = %-a +,Z, (a- cos kx+ by sin ko).

The sequence {si}m will be called the Fourier series of

the function f.

Notation. We shall denote by S, the functions such
that

(3) Vox(Sp(x) = 1+ 20,5 cos 2 kx).

Ir #£(£,0a29r) and £ is periodic with period 2or , we
shall denote this fact by P (f,0a20r).

Theorem 1 can be proved easily in the same way as in
classical mathematics (see e.g. [81).

Theorem 1. Let &£ (£f,0a2% )., Then V mx (sﬁ(x) =
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1 -
= g7 f, [z - 8, (557)1dw)

Ir P(£,0a2a), then

¢ 4 X+ X
W) Vax(sl(x) = 5= '£-”[f(u)-sm(—2——)] au &

2
&af(x)‘i'fgf(f( +2t) + £ ) at)
n =7y x x - 2t)) .+ §;(t)] at).

In particular, if £ is a function such that V x(£(x) = 1),

we obtain

I

k=4
ved =2 [Prg et a vaa =g o[ [5(5%)] aug

_ 1 il =X
&1 =gz-f L8 (=51 au.

Theorem 2. Let f be of weakly bounded variation on

aA b. Then there exists a FR-number A such that

5) Vuafpl(u>0&a e x<ffcb<cfo

> ijtf(x)-mcbx]d.x\ é%& lff[f(x)-b&n(uxldx \<—'£—) .

Proof. There exists u such that for every non-decrea-
sing finite sequence {xg3," o of FR-numbers in aAb we

have

Tren obviously also there exists v such that

(n ¥V x(xeanbo V £(x)| < V).

let 45 2-(u+3-v), % >0and a < x<f<b. Accor-
ding to Lemma 1
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(8) Lﬁ[f(x)-/u'/n(ux]d.x= %-};‘:pft(ﬁ)-m)nry_]d/y“

Obviously =1 3R L ((k-1)or & heoc <o+ & L7 & @< (L+1)-30).
Let

(9) (- bt c<hawrKleawéa-foc(L+d)or.

Then obviously k - 1 & £ . One can construct the non-de-

creasing finite sequence {ap; 5:'_*1 ,  such that

g = VG (&G ELD yy=goo) Koy =« ® -

We have
B L1 %y ,
2 5o - ), .
(10) Lwlf(“) Asimldy igv L*é“[f(“) rim oy dday

Ilet k&£j <2 + 1. Then Y42 Y c(G-N-warg.a .

We have Yoy (ye(G-1)oraj.or > simy = 1% lain g 1) .
Hence

£ 2 . 5-1 9% .
(11) I%jf(%)-mn»@)dry.-(-47 fw_q[f(g)-lmfw”%-
According to Lemma 1

¥ . BT e g1 .
(12) f%—ff(%;)-lmg,lldgr f*’-;@mcf(za, = or)- ladn t 11t

let us suppose that k < £+ 1. From (10) - (12) we obtain

[f(%.’.?_:i gr) .

3
I:, t£(Z)- M,.,Ja,., <) =

f(h 1).
(13) 'lbbmn‘,l]d.g-l-.% (—4)"3[ [f(au__,,),

‘Mnn*ud..},-b(—ﬁ)“ f -’*4- ar) |Mb@”dn*

Because of (13), (8), (7) and (9)
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B . 1 T
(14) \L [£(x)mmuxldx)< =" (z.qx.fo [rim gy ldy +
g P (A nin g 1de)
L% 40 1778 (£ 2a) | pin g 1 dy

Let k =£ + 1. By (9) then £ 7 & - < fB<(£+1)-T,
hence by (8) and (7)

p 1 3 - (22 1d
1£[f(a:)'.u'm(cwt]dat\(-a:.qr.f(*‘[;k&my,lldq,.z—;.j;'" [lsingylldy,

hence (14) holds also for k =£ + 1, In view of (6),(7) and
(9)

L g . .
1) Vy(yelom=lZ (1) A(EeE ) l<ua ).
From (14) and (15) it follows

B . 1 L _ A
(16) lL[f(x)-bwuyak]d,x\é@- (ws3e0):[ Taimyldgy= 3 .

Let us denote the formulas (9) and (16) by A and JB res-
pectively. We have proved A = B , hence IkL A > B ,
hence 11 IR LA = 171 B and because 13k LA , we have
7= B, hence (16). The assertion (5) has been proved for
sin, for cos it can be proved analogously.

Theorem 3. Let $£(g,anb). Then

P . . . ‘
L [g(x). simn @xldx ;7> 0 uniformly with respect to

<, Peaast amd[lgx)eoouxldx o> 0

uniformly with respect to o, (3 € @ & &, i.e.

(17) Vm Juwo Veor 3l >m, & <,feanlk o

51 £7g () eompulebx|< T 1 g 60- Aim@xldax 1< T™)
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In particular, if &£(f£,0a2a) and {ag .o, {Mie. 4 are
the sequerces of the Fourier coefficients of the function

f,thenwhmo and R 0.

R~>co
Proof. By Theorem 4 in [11] it follows from the defi-
nition of Lebesgue integral that for n there exists a func-

tion £ of bounded variation on aaAab (even polygonal on

aoab) such that f:[ Iy (x)- £(x)11dx < gty
Theorem 2 we have (5). Let wm, % 2™". A . Then for @«>
> @, (hence RN % )and x,Beant ,

\jhlq(x).m(a-x]o(.xléj‘:[Iq»(x)-ff.x)\]d.x +
ol

#1 PO s @addn < 277 B < 27

The assertion (17) has been proved for cos, for sin it can
be proved analogously.

Iemma 3 is proved in the same way as in classical me-
thematics (see e.g. [ 8], the prod of Theorem 31) on the
bagis of Theorem 3 and using the second mean-value theorem
for Lebesgue integral (see [2], p. 264).

lemma 3. Let P(£,0482x7), et 0<d<cc < %:—

and let {g, %, be the sequence of functions such that
vnmt%m=Lfcc£<a<+2t>+£cx-2t>).s,,,ctuau) :

Then {q;,,3, converges uniformly on R to zero.
Notation. If P(£,0a 2ar) , then we shall denote

for a fixed J” by /b:{ the function such that

; .
M (g (%)= -+ fOLCE (x5 240 + £ (x=28)) - Sy () Tkt ) .



Theorem 4. Let P (£,0A25r) and let 0< "< &

5

Then {hf,, - bﬁf? m converges uniformly on R to zero.

In particular, if £ is such that V x(£(x) = 1), then we
J

get -3—,}; LSm(t)ldt 7551 -

Proof. By Theorem 1 we have

x
A=A e [T (2 (0 +24) + £ (x-280)- S,,(4)1dt .

Hence by Lemma 3 (where ¢ = % ) the assertion of the
theorem holds.

Lemms 4. Let for f,m,n and FR-numbers a,b,A,x,e ,d”
it holds a<b, L (f,asd), €>0, a+e < x<€b=-€,
m (X E 1. (o
0-<¢:“'<arn.un(2 ’2)’M>i ( 7 1) and

(18) V3 (@<m<[3<4b':’Lprf(“).M(Qmp+4)‘—‘;—dew‘<-A— )

2m+1" "
Then
J ) A+ 4. 1))
(19} I_L&Eq(x,t). S, (£)1dt |« s , where
2Amaq
(20) @(x,t) = £(x + 2t) + f(x - 2t) - 2+ £(x).

Proof. Iet the assumptions of the lemma be satisfied.
Then

. r.m
d> —m—

2-m+ 1 et ¥ 2-m 44 °

Then O<g<d'< &

’

»|

ff (x, )5, (£)1dt = [Topx, ). 2m@me D1y . f'fr».,cu.q,ctn dt,
8'9 ’ m r ’ amt 4

where h and g are functions such that

- 764 -



(21) Ytn(t) = g (x,t)- sin (2m + 1)t)
and Vt (tegad o 9""”";?::%')

Obviously £ (% ,yad’), ¢ is non=increasing on a4 0"

> g () > q () > 0 , hence by the second

1
and Ay
mean-value theorem for Lebesgue integral ([ 2], p.264)

C
(2) 3¢ (ypes§<ed &fyf}»(t)-g,(t)ld,t =

1 §
= Sy Jp (R4 .
By using Lemma 1 we get for §e€ yad :

3
fruut)]at = f:[qu,w.m (2m+1Dtldt =

4 +2§ i =X
o3, -5.<J":27[fm>.mcam+4) 22 -

- j:_j:[f(w)-/abm(ﬂ.m-t— LSS PR

o5 (2am+1)§ - cod (2m 4+ H)
2-m+ 1

+ 2. £(x)-

We have 2 <X+ 2. € x+2-§ € X+ 2. d<x+e€ & and
Gex-e<x-2-Tex-2:§ex-2-7"« H , Henece, in view of
(23) and (18)

Ak Ol pyogng or (22) thus

ljfth(t)]d.ﬂ < oA

J’ g A+l . 1£6x))
. = » dt e
(24) U;[q(,x,t) Sa(t)1dtl l[‘ [ (t)-g (t) l‘(z-mu). 7

v . 2 2-m
We have 0<q’<-i—, fhmM*fé;r—-a’-m. In

view of (24) we have (19).
Notation. We denote M., aabd if a<b, M. is a set and
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there exists a FR-number ¢ > O such that
Mc(a+edla(b-e) .

Theorem 5. Let X (£,0s2ar), Mc, asbd and let the-
re exist a FR-number A such that

(25) Vmxcef(xeM&a<caw<fB < &=
5 L[ TE ) sim (Qms N X T | < 'i’-%-? ).

Then Fourier series of the function f converges on M to f.

If moreover f is uniformly continuous on a segment cén-
taining M, then the Fourier series of the function f conver=
ges uniformly on M to f.

Proaf. Obviously it suffices to prove only the special
assertion. Let us choose a fixed n>0; there exists a FR-nu-
mber € > 0 such that Ms(a +e€)Aa (b -¢); £ is uniformly

on a segment containing M; thus there exists J~ such that

(26) 0<d<min (T, % and.

1

(27) Yxt(xeM&kte0adslgx,t)l< —

where c¢p(x,t) is the same as in (20). In view of (26) by

. 4 . m
Theorem 4 there exista m, > 5 (T - 4) such that

- 1
(28) Vmx (m 2 mm, = | &, (- A0 1< L &1 2. [T, (tat-11< 550

IFem

Let mZm, and xe M. Let us denote 4 % el By Lem-
ma 4

J
(29) | [Ig(x,£)-S,, (I dt | < ‘-A‘—"-i;—_‘—'gi)—‘ . We have
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X 4
a0 AG0-£(x0= L. [gtx,8):8,(0)1dt+200-

pl
(2 [ 18,(0)1dt-1) and
o
(313 [T (o, B (1t = [T (,8)- S (01t 4 [ T, .S, (011,
(4

Clearly -0 < < o, thus in view of (27)
z 1 .07 : .

If [q(x,t).Sm(t)]aLtléﬁ-foﬂlsm(t)u dt . Obviously for
(]

every t we have 1S, (t)| € 1+2:on, thus

_{'ZElSm(t)l] dt €« (2:m +1)-y = . m , hence
7 ar
(32) lj'o [g(x,t). S, (Ddt] « = .

In view of (28) - (32) we have

1 ) - £ < 14, GO-8F2 0 +

A+4 . | £06GO)

2o ).

+ I -£0l e Lo (24 12601+

Obviously there exists a FR-number B such that

Va(x e M 1£(x)l € B), hence I (x)-£601 < L.(243+ A2HB

‘We have proved that there exists a FR-number C> Q such that

Ym Am, Vem x (m;mo&xeM=lA:»(x)—£(x)\e %) .

Thus the special assertion holds.

An immediate consequence ef this theorem is the follo-
wing theorem.

Theorem 6. Let P (£,0A2ar) and there exist FR-num-
bers a,b,K such that a<b and
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(33) Vom ot B la< o< < &l [iE)nin (me L wldal +
+|f:[£(w)-m(m+%)w3du | « -i%(ﬂ—n-ﬁ) .

Then (a) thé Fourier series of the function f converges on
avyb to £ and

(b) for every A and B such that, a<A<B<b and f is
uniformly continuous on AAB, the Fourier series of the
function f converges uniformly on AAB to f.

Theorem 7. Let &P (f,0a29r) and let £ be of weakly
bounded variation on aAb.
Then (a) the Fourier series of the function f converges on
avb to £ and

(b) for every A and B such that a<A<B<b and f is
uniformly continuous on AAB, the Fourier series of the
funetion £ converges uniformly on AAB to f.

Proaf. By Theorem 2 there exists a FR-number K such
that (33) holds. Hence by Theorem 6 the assertion of the
theorem holds.
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