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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROIINAE 

17,4 (1976) 

ON THE STRUCTURE OF FIXED POINT SETS OP PSEUDO-CONTRACTIVE 

MAPPINGS 

Rainald SCHONEBEBG, Aachen 

Abstract: Let (E, II II ) be a Banach-space, X a closed 
and bounded subset of E and let f: X —> E be & pseudo-con
tractive mapping. It is shown that under certain conditions 
the set Pix(f) of fixed points of f is metrically convex and 
hence pathwise connected• 

Key words: Inward- nonexpansive, pseudo-contractivef 
k-set-contraction, metrically convex, pathwise connected. 

AMS: 47H10 Ref. 2.: 7.978,53 

The purpose of t h i s note i s to give some conditions 

which assure that the f ixed point s e t ©f a pseudo-contract

ive mapping i s metrical ly convex and hence pathwise connec

ted • A recent result of the author i s basic for the proofs. 

.Definition 1 . Let (Ef II 1| ) be a Bsnach-space and X c £ , 

X i s said to be metrical ly convex: <==> 

;<M-=-j> V 3 25*XAZ4-y/v Bx - yfl * Jlx - all + lly - zJ 

Remark 1 . Every convex s e t i s metrically convex but 

the converse i s n ' t true in general (E:» J£ , II U := max-norm, 

X:= 4 ( 1 t l , t ) l t e [ - 1 , 1 . 1 $ ) . 

A fundamental property of a metrical ly convex se t i s d#sc-

ribed by 
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Proposition 1 (K. Menger). Let (B, Jl l| ) be a Banach-

space, Xc E be closed and metrically convex, x,yeX and 

d : = « x - y i . 

Then there is CJ> : [ o,d 3 —» X such that 

( i ) cf (o) * x A <% (d) « y 

(i.e. cj is an isometry) 

Proof see [13, Theorem 14.1. 

Corollary 1. Let (Efil II ) be a Banach-space an5 let 

Xc E be a closed and metrically convex subset of E. 

Then X is pathwise connected. 

Proof: Obvious. 

Corollary 2« .Let (E, I I ) be a strictly convex Banach-

space and let Xc B be closed* 

Then X is convex if and only if X is metrically convex. 

Proof. If X is convex then X is obviously metrically 

convex. Conversely suppose X is metrically convex and let 

x,yi X. By Proposition 1 there is an isometry 

<f : [ ©, I x - j W1 —* X such that cy (o) - x and 

c p ( l x ~ y l ) * y. Since (E, II 11 ) is strictly convex, <p 

is affine (see L91) and hence <f C Co, iix-yi)13 is con

vex. Therefore co( «tx,y J ) :* convex hull of <x,y$ c 

c q C C o, II x - y i! 11 c X i.e. X is convex. 

Definition 2. Let (E, I J ) be a Banach-space, X c M and 

let f: X-—>B. 

(1) f i s said to be nonexpansive: <==> V „ )l f (x) - f(y>))& 
* , # € X 

llx - yil 
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(2) f i s said t© be pseudo-contractive s <»> 

j «==» v V II x - y II £ II (1 + r) (x - y) - r ( f (x) -
.tf.«U€X «* £ 0 

- f (y)) l ! 

Remark 2. Pa audo-contractive mappings are characteriz

ed by the property: f is pseudo-contractive if and only if 

Id - f is accretive (see f23). It is easily seen that the

se mappings include the non-expansive mappings. 

In [HIwe proved the following theorem: 

Theorem. Let (E, 11 II ) be a Banach-space and suppose E 

is a closed subset of E such that every nonempty, closed, 

bounded and convex subset of M possesses the fixed point 

property with respect to nonexpansive selfmappings • Let g: 

: M—> E be nonexpansive such that at least one of the fol

lowing conditions holds: 

(A) M is convex and g CMlc M 

(B) Fix (g)r»3M » 0 1} 

Then the (possibly empty) fixed point set of g i s metrical

ly convex and hence pathwise connected. 

The approach of C43, showing how fixed point theorems 

for pseudo-contractive mappings may be derived from the f i 

xed point theory ®f nonexpansive mappings, may be modified 

to obtain the following two theorems: 

Theorem 1. Let (E, if SI ) be a Banach-space and suppose 

X i s a nonempty, closed, bounded and convex subset of E such 

that every nonempty, closed, bounded and convex subset of X 

possesses the fixed point property with respect to nonexpan-

1) 8M:- boundary of M 
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sive selfmappings. Let f: X — > E be a k-set-contraction. 

(in the sense of the Kuratowski-measure of noncompactness 

163, k2o), pseudo-contractive and inward (i.e. 

VaY 3 3 f(x) = x + c(u - x)f see [33). 

Then Fix(f) is nonempty, bounded, closed and metrically 

convex. 

Proof. Let & € (o,l) such that &• k<l and define 

T: X — * E by T(x) := x - & • f(x). Because f is pseudo-cont

ractive we have 

(i) V v II T(x) - T(y)l2r (1 -&) U x - y * 
*,«^£X 

Let now ycX. Defining \ : X—* E by h (x):= &f(x) + 

+ (1 -&)y it is easily verified that h is condensing (be

cause &• k<l) and inward (because f is inward). Hence by 

t83 there is xeXwith .\,(x) = x i.e. T(x) = (1 - & )y. Thus 

we have shown: 

(ii) M:= (1 -&)XcTrX3 

Because of (i) and (ii) we may define g: M—*> M by g(x) := 

:= (1 -&)T~ (x). Then g is nonexpansive (because of (i)) 

and every nonempty, closed, bounded and convex subset of M 

possesses the fixed point property with respect to nonexpan

sive selfmappings. Since Fix(g) = (1 -&)Pix(f) the theorem 

stated above gives the assertion. 

Corollary 3. Let (E, II II ) be a Banach-space, 0 + X c E 

be closed, bounded an convex and let f: X—* X be a k-set-

contraction for some k-<l and pseudo-contractive. 

Then Fix(f) is nonempty, compact and pathwise connected. 

Proof. Let 0^= co(f CX3) and Cn+1-= co (f C Cn3) for 
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n £ l . Then C ^ : - - ^ ^ Cn i s nonempty, compact and convex 

such that f t Co, 1 c G^ (see e . g . £ 63 ) . Furthermore 

F i x ( f ) c C^ . Se t t ing g:= f I c Theorem 1 ani Corollary 1 

y i e l d - observing Schauder's f ixed point theorem - that 

Fix (g) i s nonempty, compact and pathwise connected. Because 

of F ix ( f ) = Fix (g) we are done. 

Theorem 2 . Let (E9 U I ) be a. Banach-space such that 

every nonempty, c lo sed , bounded and convex subset of E pos

s e s s e s the f i xed point property with respect to nonexpansi-

ve selfmapp ings. Let furthermore XcE be open and bounded 

and l e t f: X—> E be a k-set -con tract ion (k £ ©) and pseudo-

contract ive such that F i x ( f ) n 3X « 0. 

Then the (poss ib ly empty) f ixed point se t of f i s closed, 

bounded and metrical ly convex. 

Proof. Choose X € (0,1) such that X* k < l and de

f i n e T: X—-»E by T(x):=- x - & f ( x ) . Set Er« I CX]. Then M 

i s c losed because X i s bounded and X f i s condensing. Since 

f i s pseudo-contractive we may define g: M—* E by g(x):=-

:=- (1 ~&)T~ ( x ) . Then g i s nonexpansive. Now Nussbaum'a in -

variance of domain theorem C6J y i e lds that T maps X into the 

i n t e r i o r of M. Therefore 3 M c T LB XI which implies that 

F ix (g) n dM = 0. Observing Fix(f) « (1 - &) Fix ( f ) we are 

d one. 

Corollary 4 . Let (E, < , > ) be a Hilbert-space and 

l e t XcE be an open, bounded neighborhood of the origin. Let 

f : X—• B be a k-set -contract ion for some k > o and pseudo-

contract ive such that 
V

a v y f(x) = &x .—»&<!. 
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Then Fix(f) i s nonempty, closed, bounded and convex. 

Proof. Theorem 4 of £103, Theorem 2 and Corollary 2. 
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