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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROUNAE 

18,1 (1977) 

ONE EXAMPI.E CONCERNING TESTING CATEGORIES 

Jiff ROSICKf, Brno 

Abstract: It is shown that there is a complete, co-
complete, extremally well- and co-we11-powered category A 
which contains any one-object category as a full subcate
gory, but there is a small category not equivalent to a 
full subcategory of A. 
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Secondary 18A35 

The result stated in the abstract answers a question, 

which naturally arises in the study of testing categories. 

Namely, under a mild set-theoretic assumption there is a. 

two-object category full embeddability of which into a com

plete and extremally well-powered category A maka any con

crete category to be equivalent with a full subcategory of 

A. Further, for any set S of one-object categories there is 

a complete, co-complete, well- and co-well-powered category 

A which contains aiy category from S as a full subcategory, 

but there is a small category not equivalent to a full sub

category of A (see [3D. The last example is constructed by 

means of a suitable completion of a coproduct of categories 

from S. I did not succeed in managing so with all one-ob-
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ject categories. But one can make use of the Mac Neille 

completion of a faithful functor in the sense of [I]. The 

point of it is that the corresponding "Mac Neille comple

tion" of a category C, i.e. a completion in which C is den

se and codense almost never exists (see [2]). I hint at the 

fact that the category A which will be constructed is neit

her well-powered nor co-well-powered. It remains a* question 

whether it is possible. A disadvantage of A is that it is 

not fibre small (A has a proper class of non-isomorphic 

structures on each underlying set x). 

Let N be a category which has as components all one-

object categories and U: N—*- Ens be a functor such that 

the restriction of U on an object n of N is the horn-functor 

N(n,-). Let V: A — > Ens be the Mac Neille completion of U. 

Then A looks as follows: 
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Here £ B S , and -5ns2 a r e c°Piea o f t h e category of sets and 

A are indexed by objects of N. Objects of A_ are couples 

(xf C ) where x is a set and C is a certain set of mapp

ings x —*> Un such that the following condition is satisfi

ed: If Tie is the set of all mappings g: U n — > x such 

that for each f e £ there is a morphism h: m—*> n in N 

such that Uh = fgf them £ is the set of all mappings f: * 

: x — > Urn such that for each g c ^c there is h: m — > m 

in N such that Uh » fg. 

Morphisms (xf f )—> (x'f £' ) in A^ are mappings f: x—* 

— > x # such that gf c £ for each g e f' # If n=f n', then 

there is no morphism between objects of A^ and A_, • Let y 6 

e Ens-p 2 € Ens^ and (xf £ ) 6 An. Then morphisms y — > (xf £ ) 

and (x J )— * • 2 are mappings y — * x and x — » 2. So there is 

no morphism from Ens^ to A^ and from An to Ens-, • Morphisms 

in A compose as mappings and V is the obvious underlying 

functor. 

It is easy to show that A is complete and cocomplete 

and that V preserves limits ar-d colimits (after all it fol

lows from [1]). Thus each category An is well- and co-well-

powered. Let ye Ens-,, (x, f )s A n and 2 a Ens*. Any morphism 

f: y — > (xf £ ) can be faetorized as y i > x * » (xf £ ) and 

similarly any g: (x, J )—>z as (xf C ) ~ * > x ^"> z. Hence 

f cannot be extremally epi and g extremally mono. Thus A is 

extremally well- and co-well-powered. 

Pollowing [13 there is a full embedding Y: N—-*A. It 

suffices to put Yn » (Unf-(Uf/f: n — * n $ ) and Yh * Uh. Let 

(xf £ ) * A^, f a £ and g € ̂ - . Then f: (xf £ )—*Yn and 
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g: Yn—>(x
f
 C ) are morphisms in A

n
. So for any (x, ̂  ) e A

n 

such that # 4* S 4* (Un)
x
 there are morphisms Yn—>(x

f
 J )-

— * Y n . 

Suppose that the following category is a full subcate

gory of A (there are indicated non-identical morphisms) 

Since a, b have exactly two endomorphisms, they differ from 

objects of the type (x,^) or (x
f
(Un)

x
). Hence a

f
 b do not be

long to the same A because otherwise it would be a morphism 

a—*Yn—**b. Thus c^Ens^. Since c has exactly one endomorp-

hism, c equals to ct> or 1. But now one cannot have two morph

isms from a to c. 

We have shown that A has the desired properties. 
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