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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

18,1 (1977) 

ITERATED UI/TRAPOIER AND PRIKHT'S FORCING 

Lev BUKOVSKÍ, Košice x> 

Abstract: It is shown that the factorization of the 

Boolean ultrapower V by#a suitable ultrafilt er 11 is 
isomorphic to the Gaif man's direct limit of the iterated 
ultrapowers ^ n fn e a) 0, where B is the Boolean algebra of 
the Prikry's forcing. Moreover, the corresponding extension 

v/ / U is isomorphic to the intersection O J^** /11 is isomorphic to the intersection f 

Key words; Iterated ultrapower, generic exter 
ing, measurable cardinal* 

AMS: 02K05, 02K35 Ref. 2.: 2.641.3 

In the note CI] I have shown that the intersection JC * 

= r \ JT* of n-th ultrapowers JC~ of the universe V is 

a generic extension of the Gaifman's direct limit *^o>0 of 

JCn,n e a>0 (with corresponding elementary embeddings). Mo

reover, this generic extension possesses properties similar 

to those of the extension constructed by K. Prikry 143• P. 

Dehornoy C2] has proved that actually JC is the generic ex

tension of JCe# by Prikry's forcing (constructed inside 

the model .Xij )• In this note I will prove the same result 

x) The result of this note has been presented on the Logic 
Colloquium, Clermont-Ferrand 1975. 
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by a method different from that of P. Dehornoy and obtain 

some additional information. Namely, I will prove the follo

wing theorem: 

Let K be a measurable cardinal, %, being a normal 

measure on \c • Let B denote the complete Boolean algebra 

constructed from the Prikry's forcing. Let % be the ultra-

filter on B constructed from U by (3). Then 

i) the ultrapower \/ / % is isomorphic to the mo
del class J/1* j 

o 
/o) 

ii) the factorization V /% of the Boo3e an-valued 
(B) model V v ' is isomorphic to the intersection C\ Jf' 

fit € U>Q n 

and 

i i i ) f \ Jfn = M^ [ a ] , where the set a is a 

generic subset of the Prikry's forcing. 

Terminology and notations are those of 11] and £33. How-

wever we remind some of them here. 
C If C is a compile te Boolean algebra, V will denote 

the class of all functions f such that the domain $) (f) of 

f is a partition of C (i.e. elements of S> (f) are pairwise 

disjoint and the union of 3) (f) is 1). For any formula 9? 

of the language of the set theory, one can define the Boole

an value 

. 9 > < f i ' - - - > V l c e C 

Q 

f l f . . . , f n 6 V , in the obvious way, e .g . 

• f l € f 2 ' c s V * X € C ' <3u)(-3 v) (x js .u&x£v&f 1 (u)e f 2 (v ) ) J . 

If 1T is an ultrafilter on C, we obtain the Boolean ultra-
c 

power V /V defining the membershiprelation e^ as 
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f o l l o w s : 

f e ^ g s l f € g l c 6 V . 

The famous tos-theorem says that 

(l) c V / r M ? ( f l l . . . , f n ) - l 9 ( f 1 , . . . , f I 1 ) l c e f . 

(C) The Boolean-valued model V and the Boolean value 

II <p (flf...,fn) A C 6 C are defined e.g. in[3J. If the ul-

trafilter V is &-additive, then one can define the in-
(C) terpretation i^ of V as in [33, p. 58, by induction 

ly ( f ) = i iy, ( g ) ; \\ gef\\Qe Vi . 

Let x £ V .We s e t 

£ K x ) = \1}9 x ( l ) = x . 

Then xe V . The function x e V is defined in C3], p. 

53. 

If V is C-additive, then ° V /V is well-founded 
C and there exists an isomorphism TJ/^ of V /V onto a 

transitive class. One can easily define an embedding X of 
C V into 'V ( C ) such that 

X ($) = £ 
n 

for any x € V . It is easy to see that for any f€ V , 

the following holds true: 

C2) iv( X (f)) = Vvif)* 

Let K be a measurable card ina l , 16 being a normal me

asure on K . %n denotes the u l t r a f i l t e r 11 K •••X% on 

It . The s e t P o f Prikry's c o n d i t i o n i s defined as fo l lows 
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(n = 0 i s allowed 1): 

J>€P2S V c <<°S» — >oC^^^ >5 ^ i / * - . < cc/Tl<4i^f X,X 6 26 , 

P'« p" » «,' > m,*, *; . < , . . . , < . » < w , X ' c X ; cc' e * " 

for n"<: i £ n ' . 

Let B denote the complete Boolean algebra containing P,_£ 

as a dense subset. We define % £ B by the condition 

(3) A*%& (3X s K)U € % & <0 ,X>£A). 

K. Prikry C53 has proved that % is a K, -complete ultra-

filter on B. 

Let IC (n) denote the set -t < f,,..., f^, >; %**..< fm€ K J 

Evidently i c ^ c ^ . P o r <^,..f,f/Tl>€ «*"' , we set 

PP,-.IW - << f t .-» f* >i« - ^ » + <>> • 

The set -Cpj j^S < ?* i*..» f/n, > 6 * * is a parti

tion of the Boolean algebra B. By a simple computation one 

t can prove for each X £ K*(n) that 

(4) V<5,r.-f-.>.X * ~ W ' 

The set 
« — J S/ Tl _, *» '. X £ JCx 
B_ . t s *<*£.,!•,>• x P w - ? - ' 

is a complete subalgebra of the Boolean algebra B. Evident
ly B £ B n. Moreover, Bw is atomic with the set 
_vy "n n+1 n 

< .* . < c € > * tc } ofl atoms. 

Since * ( n ) e » n , the mapping fn defined for f c "* V 

aø 

?
Л
^

)C
<?

1
»-»Çm.>)вf(p^.-.f>,

> 
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induces an isomorphism - denoted by the same letter g>n -

of "V/E onto * V/%^ . 

The inclusion B £ BL, n_£ m induces the natural embed-

*V /€ s V /^ . 
Let j denote the natural embedding of V/U^ intc 
K«m,

 n » m 

V/11^ . The transitive class J^ is equal to 

tf̂  ( V/%^) and >>n is the corresponding embedd

ing of JPn into ^ m # 

Since B £ B, we can write n * 
B*v/c £ Bv/u . 

We show that in fact 

(5) B V / » = U "V/fc . 

B 

Let f € V • We can assume that «Z)(f)sPf i . e . that f i s 

defined on the elements of P. Let 
P^- K < ^ y , X > e P i * • - / . - . ! . 

Then 3>(t) - U ( f l t f lnP, , ) and also 
••IV IX 

1 = V2) (f) « V V ( a ( f ) n P J . 
•71/ n 

Since 1L i s tf -additive, there exists a natural number n 

such that 

V ( » ( f ) f t P B ) € % . 

If p,qe P n A 3 ( f ) , p * q then pAq » 0. Thus, i f 

p * << ?-,,..., $,*>, X > , q = < < ^ , . * . , n«, >; y > , then 
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< ^ r M f w > * < ^ i > - ^ m > (since otherwise 

«£, , . . . ,?/»>> ^ r » ^ r > ^ ^ A ^ ) . W e define f e Bm*V as 

follows: 

< < f - f ^ - - ? ^ > * X > € a f f ) n P ^ for some X, 

= 0 otherwise. 

Evidently f € V and 

If = f l B > V ( P n n 0 ( f ) ) c £ . 

From the definition of the direct limit of the system 

V/% T t ;-^^^ and from (5) we obtain a natural isomorphism 
* B — H.*** 

5>^ from V/11 onto Jlyn> V / ^ . 

I f Yd> * s t l i e isomorphism of lim V/^6^ onto the tran

s i t ive class JC& } then m^ o y ^ i s an isomorphism 
B — 

from V/26 onto JL> • 
o 

ca> — 
Since the interpretation ±jg of the model V /% maps 

the submodel \//1JL (more precisely, the submodel 

Xi V// 1i onto a transitive class, one can easily see that 

C6) X ° *7& - fco0 • Vt4>0 > 

i.e., for fe V we have 

I<et h e V ^ be such that 

82 -



By an easy computation we obtain 

(7 ) <L~ ( * t ) = •i <n>, Km, > », ^ « *>0 ? 

where K^ ~ f% ^K ' 1S the measurable cardinal in ^ . 

By K. Prikry [4], the generic extension V /U of 

BV /% (more precisely, of X (BV )/U ) is such that 

V ( B )/16 = B V /U [ hj . Thus, by (6) and (7) we obtain 

(ft) — 
(8) i « ( V /1l) » JL C-K/rijic >j m. c ^ I 3 . 

iV © 

In CI], we have proved, denoting -Km,, te^. m- c o>d i by 

a, that 

for every n € oQ • Now, we shall show that also 

(9) £ J C - ^ C c - v J . 

Using the theorem of R. Balcar and P. VopSnka, [31, p. 

38, it suffices to show that each x 6 (̂  /^ , x £ On is an 

element of the class JCS C a 1 . 

We set 

x n = n > > W S ) e X ? ' 
Then 

**.,«- ( x n } £ x -

Let f 6 ^ V be such that ¥% (9m, C fm.^ = ^m. • 

One can easily construct functions gjj 6 ^ V , » * ca0 in 

such a way that f -, =- g-. and 
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By simple computation we have 

(B) 
Now, we define f e V as follows; 

' Ф - Y 1 ? ' ^ U € B • 

Then 

i f t t f ) - x , 

thus, by (8) , 

x c JfL Ca l . w o 

(B) — 

Let us remark that the model V /% i s well-foun

ded, but U i s not generic u l traf i l ter . In fact , the exis

tence of such a non-trivial well-founded (Boolean) model 

implies the existence of a measurable cardinal. 
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