Commentationes Mathematicae Universitatis Caroline

Lev Bukovský
Iterated ultrapower and Prikry's forcing

Commentationes Mathematicae Universitatis Carolinae, Vol. 18 (1977), No. 1, 77--85

Persistent URL: http://dml.cz/dmlcz/105751

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

$$
18,1 \text { (1977) }
$$

ITERATED UITRAPOWER AND PRIKRY'S FORCING
 Lev BuKOVSKł́, Košice
 x)

Abstract: It is shown that the factorization of the Boolean ultrapower ${ }^{B} V$ by a suitable ultrafilt er \bar{u} is isomorphic to the Gaifman's direct limit of the iterated ultrapowers $\mathcal{N}_{n}, n \in \omega_{0}$, where B is the Boolean algebra of the Prikry s forcing. Moreover, the corresponding extension $V^{(B)} / \bar{u}$ is isomorphic to the intersection $n \in \omega_{0} \mathcal{N}_{n}$.

Key words: Iterated ult rapower, generic extension, forcing, measurable cardinal.

AMS: 02K05, 02K35 Ref. Ž.: 2.641.3

In the note [1] I have shown that the intersection $\mathcal{N}=$ $=\Omega_{n} \mathcal{N}_{n}$ of n-th ultrapowers \mathcal{N}_{n} of the universe V is a generic extension of the Gaifman's direct limit $\mathcal{N}_{\omega_{0}}$ of $\mathcal{N}_{n}, n \in \omega_{0}$ (with corresponding elementary embeddings). Moreover, this generic extension possesses properties similar to those of the extension constructed by K. Prikry [4]. P. Dehornoy [2] has proved that actually \mathcal{N} is the generic extension of $\mathcal{N}_{\omega_{0}}$ by Prikry's forcing (constructed inside the model $\mathcal{N}_{\omega_{0}}$.). In this note I will prove the same result

[^0]by a method different from that of P. Dehornoy and obtain some additional information. Namely, I will prove the following theorem:

Let \mathcal{K} be a measurable cardinal, U being a normal measure on κ. Let B denote the complete Boolean algebra constructed from the Prikry's forcing. Let $\bar{\psi}$ be the ultrafilter on B constructed from U by (3). Then
i) the ult rapower ${ }^{B} V / \bar{U}$ is isomorphic to the modelclass $\mathcal{N}_{\omega_{0}}$,
ii) the factorization $V^{(B)} / \bar{u}$ of the Boole an-valued model $V^{(B)}$ is isomorphic to the intersection $n \in \omega_{0} \mathcal{N}_{n}$ and
iii) $\quad \bigcap_{n} \mathcal{N}_{n}=\mathcal{N}_{\omega_{0}}[a]$, where the set a is a generic subset of the Prikry's forcing.

Terminology and notations are those of [1] and [3]. Howwever we remind some of them here.

If C is a comple te Boolean algebra, $C V$ will denote the class of all functions f such that the domain $D(f)$ of f is a partition of C (i.e. elements of $D(f)$ are pairwise disjoint and the union of $D(f)$ is 1). For any formula φ of the language of the set theory, one can define the Boolean value

$$
\left|\varphi\left(f_{1}, \ldots, f_{n}\right)\right|_{c} \in C
$$

$f_{1}, \ldots, f_{n} \epsilon^{C} V$, in the obvious way, e.g. $\left|f_{1} \in f_{2}\right|_{C}=V\left\{x \in C ;(\exists u)(\exists v)\left(x \leqslant u \& x \leqslant v \& f_{1}(u) \in f_{2}(v)\right)\right\}$. If v is an ultrafilter on C, we obtain the Boolean ultrapover ${ }^{C} V / V$ defining the membershiprelation ϵ_{V} as
follows:

$$
f \epsilon_{V} g \equiv|f \in g|_{C} \in V
$$

The famous Eos -theorem says that
${ }^{c} V / v \equiv \varphi\left(f_{1}, \ldots, f_{n}\right) \equiv\left|\varphi\left(f_{1}, \ldots, f_{n}\right)\right|_{c} \in V$.
The Boolean-valued model $V^{(C)}$ and the Boolean value $\left\|\varphi\left(f_{1}, \ldots, f_{n}\right)\right\|_{C} \in C$ are defined egg. in [3]. If the ultrafilter \mathcal{V} is σ-additive, then one can define the interpretation i_{v} of $V^{(C)}$ as in [3], p. 58, by induction

$$
i_{V}(f)=\left\{i_{V}(g) ;\|g \in f\|_{C} \in V\right\} .
$$

Let $\mathrm{x} \in \mathrm{V}$. We set

$$
\mathscr{D}(\hat{x})=\{1\}, \quad \hat{x}(1)=x .
$$

Then $\hat{x} \epsilon^{C} V$. The function $\check{x} \in V^{(C)}$ is defined in [3], p. 53.

If V is σ-additive, then ${ }^{C} V / V$ is well-founded and there exists an isomorphism ψ_{ν} of ${ }^{C} V / v$ onto a transitive class. One can easily define an embedding X of ${ }^{C} V$ into $V^{(C)}$ such that

$$
X(\hat{x})=\check{x}
$$

for any $x \in V$. It is easy to see that for any $f \in{ }^{C} V$, the following holds true:

$$
\begin{equation*}
i_{v}(X(f))=\psi_{v}(f) . \tag{2}
\end{equation*}
$$

Let κ be a measurable cardinal, U being a normal measure on $K . U_{n}$ denotes the ultrafilter $U \times \ldots \times U$ on κ^{n}. The set P of Prikry's conditions is defined as follows
($\mathrm{n}=0$ is allowed):
$p \in P \equiv p=\left\langle\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle, X\right\rangle ; \alpha_{1}<\ldots<\alpha_{m}<\inf X, X \in U$, $p^{\prime} \leqslant{P^{\prime \prime}}^{\prime \prime} n^{\prime} \geq n^{\prime \prime}, \alpha_{1}^{\prime}=\alpha_{1}^{\prime \prime}, \ldots, \alpha_{m^{\prime \prime}}^{\prime}=\alpha_{m^{\prime \prime}}^{\prime \prime}, X^{\prime} \subseteq X^{\prime \prime}, \alpha^{\prime} \in X^{\prime \prime}$ for $n^{\prime \prime}<\boldsymbol{i} \leqslant n^{\prime}$.

Let B denote the complete Boolean algebra containing P, \leq as a dense subset. We define $\bar{U} \subseteq B$ by the condition
(3) $\quad A \in \bar{U} \equiv(\exists \mathrm{x} \subseteq \kappa)(\mathrm{x} \in \mathcal{U} \&\langle\emptyset, \mathrm{x}\rangle \leqslant \mathrm{A})$.
K. Prikry [5] has proved that \bar{U} is a comple te ultrafilter on B.

Let $\kappa^{(n)}$ denote the set $\left\{\left\langle\xi_{1}, \ldots, \xi_{m}\right\rangle ; \xi_{1}<\ldots<\xi_{m} \in \kappa\right\}$. Evidently $\kappa^{(n)} \in U_{n}$. For $\left\langle\xi_{1}, \ldots, \xi_{n}\right\rangle \in \kappa^{(n)}$, we set

$$
P_{\xi_{1}, \ldots, \xi_{n}}=\left\langle\left\langle\xi_{1}, \ldots, \xi_{n}\right\rangle ; \kappa-\left(\xi_{n}+1\right)\right\rangle .
$$

The set $\left\{P \xi_{1}, \ldots, \xi_{m} ;\left\langle\xi_{1}, \ldots, \xi_{m}\right\rangle \in K^{(n)}\right\} \quad$ is a martitimon of the Boolean algebra B. By a simple computation one can prove for each $X \subseteq K^{(n)}$ that

$$
\begin{equation*}
V_{\left\langle\xi_{1} \cdots \cdots, \xi_{m}\right\rangle \in x \quad \xi_{1}, \ldots, \xi_{m} \in \bar{U} \equiv x \in u_{n} ~ . ~} . \tag{4}
\end{equation*}
$$

The set

$$
B_{n}=\left\{\left\langle\xi_{1} \cdots, \ldots, \xi_{m}\right\rangle \in x \quad P \xi_{1} \ldots, \xi_{m} ; X \subseteq K^{\{m \mid}\right\}
$$

is a complete subalgebra of the Boolean algebra B. EvidentIf $B_{n} \subseteq B_{n+1}$. Moreover, B_{n} is atomic with the set $\left\{P_{\xi_{1}, \ldots, \xi_{m}} ;\left\langle\xi_{1}, \ldots, \xi_{n}\right\rangle \in \kappa^{(n)}\right\} \quad$ of atoms. Since $\kappa^{(n)} \in u_{n}$, the mapping ρ_{n} defined for $f \varepsilon^{B_{m}} V$ as

$$
\varphi_{m}(f)\left(\left\langle\xi_{1}, \ldots, \xi_{m}\right\rangle\right)=f\left(p \xi_{1}, \ldots, \xi_{m}\right)
$$

induces an isomorphism - denoted by the same letter $\rho_{n^{-}}{ }^{-}$ of $B_{n} V / \bar{u}$ onto $\kappa^{n} V / u_{m}$.

The inclusion $B_{n} \subseteq E_{m}, n \leqslant m$ induces the natural embedding

$$
{ }^{B_{n}} V / \bar{u} \subseteq{ }^{B} v / \bar{u} .
$$

Let $j_{n, m}$ denote the natural embedding of ${ }^{\kappa^{n}} V / u_{n} \quad$ into $\kappa^{m} V / U_{m}$. The transitive class \mathcal{N}_{n} is equal to $\left.\psi_{u_{n}}{ }^{\kappa^{n}} V / u_{m}\right)$ and $\nu_{n, m}$ is the corresponding embedding of \mathcal{N}_{n} into \mathcal{N}_{m}.
Since $B_{n} \subseteq B$, we can write

$$
{ }^{B} v / \bar{u} \subseteq{ }^{B} V / \bar{u} .
$$

We show that in fact

$$
\begin{equation*}
{ }^{B} V / \bar{u}={ }_{n} \cup_{\omega_{0}}^{B_{n}} V / \bar{u} . \tag{5}
\end{equation*}
$$

Let $f \in{ }^{B} V$. We can assume that $D(f) \subseteq P$, i.e. that f is defined on the elements of P. Let

$$
P_{m}=\left\{\left\langle\left\langle\xi_{1}, \ldots, \xi_{m}\right\rangle, x\right\rangle \in P ; m=n\right\}
$$

Then $D(f)=\bigcup_{n}\left(D(f) \cap P_{n}\right)$ and also

$$
1=V D(f)=V V_{n} V\left(D(P) \cap P_{n}\right) .
$$

Since \bar{u} is σ-additive, there exists a natural number n such that

$$
V\left(D(f) \cap P_{n}\right) \in \bar{u} .
$$

$$
\begin{aligned}
& \text { If } p, q \in P_{n} \cap D(f), p \not p q \text { then } p \wedge q=0 \text {. Thus, if } \\
& p=\left\langle\left\langle\xi_{1}, \ldots, \xi_{m}\right\rangle, X\right\rangle, \quad q=\left\langle\left\langle\eta_{1}, \ldots, \eta_{n}\right\rangle, Y\right\rangle \text {, then }
\end{aligned}
$$

$\left\langle\xi_{1}, \ldots, \xi_{m}\right\rangle \neq\left\langle\eta_{1}, \ldots, \eta_{m}\right\rangle$ (since otherwise
$\left.\left\langle\left\langle\xi_{1}, \cdots, \xi_{m}\right\rangle, X \cap Y\right\rangle \leqslant \Re \wedge q\right)$. We define $\bar{f} \in{ }^{B_{m}} V$ as follows:

$$
\begin{aligned}
\bar{f}\left(\mathrm{P} \xi_{1}, \ldots, \xi_{m}\right) & =f\left(\left\langle\left\langle\xi_{1}, \ldots, \xi_{m}\right\rangle, X\right\rangle\right. \text {) if } \\
\left\langle\left\langle\xi_{1}, \ldots, \xi_{m}\right\rangle, X\right\rangle & \in D(\tilde{f}) \cap P_{m} \quad \text { for some } X, \\
& =0 \text { otherwise. }
\end{aligned}
$$

Evidently $\overline{\mathrm{P}} \epsilon^{B_{m}} V \quad$ and

$$
|f=\bar{f}|_{B} \geq V\left(P_{n} \cap \mathbb{D}(f)\right) \in \bar{u} .
$$

From the definition of the direct limit of the system $\kappa^{m} V / u_{n}, j_{n, m}$ and from (5) we obtain a natural isomorphism $\rho \omega_{0}$ from ${ }^{B} V / \bar{u}$ onto $\lim _{m}{ }^{\kappa^{n}} V / U_{m}$. If $\psi \omega_{0}$ is the isomorphism of $\lim _{m}{ }^{\kappa n} V / u_{n}$ onto the transitive class $\mathcal{N}_{\omega_{0}}$, then $\rho \omega_{0} \circ \psi \omega_{0}$ is an isomorphism from ${ }^{B} V / \bar{u}$ onto $N_{\omega_{0}}$.

Since the interpretation $i \bar{u}$ of the model $V^{(8)} \bar{u}$ maps the submodel ${ }^{B} V / \bar{U} \quad$ (more precisely, the submodel $\times\left({ }^{(8}\right) / \bar{u}$ onto a transitive class, one can easily see that

$$
\begin{equation*}
x \circ i_{\bar{u}}=\rho \omega_{0} \circ \psi \omega_{0}, \tag{6}
\end{equation*}
$$

i.e., for $\mathrm{f} \mathrm{f}^{\mathrm{B}} \vee$ we have

$$
i_{\bar{u}}(x(f))=\psi_{\omega_{0}}\left(\rho \omega_{0}(f)\right) \in N_{\omega_{0}} .
$$

Let $h \in V^{(B)}$ be such that

$$
\|h(\check{n})=\underset{\xi}{\|}\|=\underset{\xi_{1}<\ldots<\xi_{m-1}<\xi}{ } \prod_{\xi_{1}, \ldots, \xi_{m-1}, \S} .
$$

By an easy computation we obtain

$$
\begin{equation*}
i_{\pi}(k)=\left\{\left\langle n, \kappa_{n}\right\rangle ; n \in \omega_{0}\right\} \tag{7}
\end{equation*}
$$

where $\kappa_{m}=\psi_{u_{m}}(\hat{\kappa})$ is the measurable cardinal in \mathcal{N}_{n}. By K. Prikry [4], the generic extension $V^{(B)} / \bar{u}$ of ${ }^{B} V / \bar{u} \quad$ (more precisely, of $\times\left({ }^{B} V\right) / \bar{u}$) is such that $V^{(B)} / \bar{u}={ }^{B} V / \bar{u}[\mathrm{~h}]$. Thus, by (6) and (7) we obtain

$$
\begin{equation*}
\mathrm{i}_{\bar{u}}\left(V^{(\beta)} / \bar{u}\right)=\mathcal{N}_{\omega_{0}}\left[\left\{\left\langle n, \kappa_{n}\right\rangle ; n \in \omega_{0}\right\}\right] . \tag{8}
\end{equation*}
$$

In [1], we have proved, denoting $\left\{\left\langle n, \kappa_{m}\right\rangle ; n \in \omega_{0}\right\}$ by a, that

$$
\mathcal{N}_{m} \supseteq \mathcal{N}_{\omega_{0}}[a]
$$

for every $n \in \omega_{0}$. Now, we shall show that also

$$
\begin{equation*}
\widehat{n} \mathcal{N}_{n}=\mathcal{N}_{\omega_{0}}[a] \tag{9}
\end{equation*}
$$

Using the theorem of R. Balcar and P. Vopernka, [3], p. 38, it suffices to show that each $\mathrm{x} \in \overbrace{m} \mathcal{N}_{n}, \mathrm{x} \subseteq 0 \mathrm{O}$ is an element of the class $\mathcal{N}_{\omega_{0}}[a]$.

We set

$$
x_{n}=\left\{\xi ; \nu_{m, \omega_{0}}(\xi) \in X\right\} .
$$

Then

$$
\nu_{n, \omega_{0}}\left(x_{n}\right) \subseteq x .
$$

Let $f_{n} \in{ }^{B_{n}} V$ be such that $\psi_{u_{n}}\left(\rho_{m}\left(f_{m}\right)\right)=x_{m}$. One can easily construct functions $g_{n} \in B_{m} V, n \in \omega_{0} \quad$ in such a way that $f_{1}=g_{7}$ and

$$
\left|\hat{\xi} \in g_{n+1}\right|_{B_{n+1}}=\left|\hat{\xi} \in g_{n}\right|_{g_{n}} \vee\left|\hat{\xi} \in f_{n+1}\right|_{B_{n+1}}
$$

By simple computation we have

$$
\psi_{n}\left(\varphi_{n}\left(g_{n}\right)\right)=x_{n}
$$

Now, we define $f \in V^{(B)}$ as follows:

$$
f(\hat{\xi})=V_{n}\left|\hat{\xi} \in g_{n}\right|_{B_{n}} \in B \text {. }
$$

Then

$$
i \bar{u}(f)=x,
$$

thus, by (8),

$$
x \in \mathcal{N}_{\omega_{0}}[a]
$$

Let us remark that the model $V^{(B)} / \bar{U}$ is well-founded, but \bar{U} is not generic ultrafilter. In fact, the exisfence of such a nontrivial well-founded (Boolean) model implies the existence of a measurable cardinal.

References

[1] BUKOVSKI L.: Changing cofinality of a measurable cardinail (an alternative proof), Comment. Math. Univ. Caroline 14(1973), 689-697.
[2] DEHORNOY P.: Solution of a Conjecture of Bukovsky, C.R. Acad. Sci. Paris Sér.A, 281(1975), 821-824.
[3] JECH T.: Lectures in Set Theory with Particular Emphasis on the Method of Forcing, Lecture Notes in Mathematics, Springer 1971.
[4] PRIKRY K.: Changing measurable into accessible cardinnails, Dissertations Math., Warszawa 1970.
[5] - : On $\boldsymbol{\sigma}^{\text {-complete prime ideals in Boolean al- }}$ gebras, Colloq. Math. 22(1971), 209-214.

Universita P.J. Šafárika
katedra matematiky
Komenskeho 14, 04154 Kořice
Ceskoslovensko
(Oblatum 15.11.1976)

[^0]: x) The result of this note has been presented on the Logic Colloquium, Clermont-Ferrand 1975.

