Commentationes Mathematicae Universitatis Carolinae

Vyacheslav A. Artamonov
The categories of free metabelian groups and Lie algebras

Commentationes Mathematicae Universitatis Carolinae, Vol. 18 (1977), No. 1, 143--159

Persistent URL: http://dml.cz/dmlcz/105758

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

$$
18,1 \text { (1977) }
$$

THE CATEGORIES OF FREE METABELIAN GROUPS AND LIE ALGEBRAS
V.A. ARTAMONOV, Moscow

Abstract

Homomorphisms of free metabelian $A_{q} A-g r o u p s$, $q \geq 0$, and free metabelian Lie algebras over a commutative associative unital ground ring k are studied. It is proved that the group of automorphisms of a free metabelian Lie algebra L of rank 2, identical on L / L is isomorphic to the additive group of the polynomial group $k[X, Y]$. Further; If $f: L_{1} \rightarrow$ $\rightarrow L_{2}$ is an epimorphism of free $A_{q} A-g r o u p s$ or metabelian Lie algebras over a ring $k=k_{0}\left[X_{1}, \ldots, X_{r}, X_{r+1}^{ \pm 1}, \ldots, x_{s}^{ \pm 1}\right]$, where k_{0} is a Dedekind ring, $r k L_{1}=n, ~ r k L_{2}=d$, then L_{1} possesses a free generating set z_{1}, \ldots, z_{n} such that $f\left(z_{1}\right), \ldots$ $\left.\ldots, f^{(} z_{d}\right)$ is a free generating set for L_{2} and z_{d+1}, \ldots, z_{n} generate Ker f as a normal subgroup or an ideal.

AMS: 17B30, 20E10 Ref. Ž.: $2.723 .533,2.722 .32$ Key words: Free metabelian group, free metabelian Lie algebra, automorphism, free generating set.

The present paper concerns homomorphisms of free metabelian $A_{q} A-g r o u p s, q \geq 0$, and free metabelian Lie algebras over a commutative associative unital ground ring k. In § 2 we show that the group of automorphisms of a free metabelian Lie algebra L of rank 2, identical on L / L^{\prime} (IA-automorphisms in terms of [1]) is isomorphic to the additive group of the polynomial group $k[X, Y]$. For comparison the similar group for a free metabelian A^{2}-group consists $0 \perp$ inner a tomorphisms
(see [1]).
In § 3 and 4 we show that if $f: L_{1} \longrightarrow L_{2}$ is an epimorphism of free $A_{q} A-g r o u p s$ or metabelian Lie algebras over a ring $k=k_{0}\left[x_{1}, \ldots, x_{r}, x_{r+1}^{ \pm 1}, \ldots, x_{s}^{ \pm 1}\right]$, where k_{0} is a Dedekind ring, $\mathrm{rkL}_{1}=\mathrm{n}, \mathrm{rkL}_{2}=\mathrm{d}$, then L_{1} possesses a free generating set z_{1}, \ldots, z_{n} such that $f\left(z_{1}\right), \ldots, f\left(z_{d}\right)$ is a free generating set for L_{2} and z_{d+1}, \ldots, z_{n} generate $\operatorname{Ker} f$ as a normal subgroup or an ideal. In particular, let P be a retract of a free metabelian $A_{q} A-g r o u p ~ o r ~ L i e ~ k-a l g e b r a ~ L ~ w i t h ~ a ~ p r o j e c t-~$ ion $f: L \longrightarrow P, k$ as above with k_{0} a principal ideal ring. Then by [2] P is free and L possesses a free generating set z_{1}, \ldots \ldots, z_{n} such that $f\left(z_{i}\right)=z_{1}$ mod Kerf in addition to the properties mentioned above.

A consideration of metabelian Lie algebras is motivated by the following reason. If k is a field, chark $=0$, then any proper subvariety of metabelian Lie algebras is nilpotent (see [3]). Moreover, this variety is semisimple,[4]. By [5] if L is a free nilpotent algebra over a fifid with a retract P then P is a free factor of L. A trivial example in § 3 shows that this does not hold for metabelian lie algebras.

It is worthy of mention that the similar results for absolutely free linear algebras were exhibited in [6].
§ 1. Homomorphisms of free metabelian Lie algebras. First we need a representation of free metabelian Lie algebras of finite rank n. Let $K=k\left[X_{1}, \ldots, X_{n}\right]$ be a polynomial ring with the augmentation ideal $m=\left(x_{1}, \ldots, x_{n}\right)$ and M a free
K-module with the base e_{1}, \ldots, e_{n}. Define an epimorphism of K-modules

$$
\ell: M \rightarrow m, \ell\left(e_{i}\right)=x_{i} .
$$

Then M can be regarded as a k-algebra with the multiplication
(1)

$$
a b=\mathscr{L}(b)_{a}-\mathcal{L}(a)_{b}, a, b \in M .
$$

A direct calculation shows that M is a metabelian Lie algebra. Put

$$
L=\left\{a \in M \mid \ell(a)=\sum_{i=1}^{m} \alpha_{i} X_{i}, \quad \alpha_{i} \in k\right\}
$$

Theorem. 1 is a subalgebra in M and a free metabelian Lie algebra with the base e_{1}, \ldots, e_{n}.

The proof under assumption that k is a field was given in [7]. But this restriction on k was not used in the proof and is not necessary.

Corollary. $\quad L^{\prime}=$ Kerl.
Proof. If $a, b \in L$, then by (1) $\ell(a b)=0$. Conversely, if

$$
n=\sum \alpha_{i} e_{i} \bmod L^{\prime}, \quad \alpha_{i} \in k,
$$

and $h(a)=0$, then $h(a)=\Sigma \alpha_{i} X_{i}$ implies $\alpha_{1}=\ldots=$ $=\alpha_{n}=0$ and $a \in L^{\prime}$.

Consider now.two free metabelian Lie algebras L_{1}, L_{2} over k with the bases e_{1}, \ldots, e_{n} and u_{1}, \ldots, u_{d}. Let

$$
K_{1}=k\left[X_{1}, \ldots, X_{n}\right], \quad K_{2}=k\left[Y_{1}, \ldots, Y_{d}\right]
$$

and $M_{i}, K_{i}, m_{i}, l_{i}$ be associated with $L_{i}, 1=1,2$, by Theo-
rem 1. Given any homomorphism $\varphi: K_{1} \longrightarrow K_{2}$ of k-algebras such that

$$
\begin{equation*}
\varphi\left(x_{i}\right)=\Sigma \varphi_{i j} Y_{j}, \quad \varphi_{i j} \in k, \tag{2}
\end{equation*}
$$

consider a φ-semilinear homomorphism $h: M_{1} \longrightarrow M_{2}$ of modules making commutative the following diagram

Proposition 1. h is a homomorphism of Lie algebras, defined by (1), and $h\left(L_{1}\right) \subseteq L_{2}$.

Proof. If $a, b \in M_{1}$ then by (1) and (2^{\prime})

$$
\begin{aligned}
& h(a b)=h\left(\ell_{1}(b)_{a}-\ell_{1}(a) b\right)=\varphi\left(\ell_{1}(b)\right) h(a)-\varphi\left(\ell_{1}(a)\right)_{h}(b)= \\
& =\ell_{2}(h(b))_{h(a)}-\ell_{2}(h(a))_{h(b)}=h(a) h(b) .
\end{aligned}
$$

Also by (2) and Theorem 1 we have $h\left(L_{1}\right) \subseteq L_{2}$.
Now we show that every homomorphism $\mathrm{f}: \mathrm{L}_{1} \longrightarrow \mathrm{~L}_{2}$ can be extended to a unique semilinear homomorphism (h, φ) with the properties (2), (2'). In order to do this define $\varphi: K_{1} \rightarrow K_{2}$ as $\varphi\left(X_{i}\right)=l_{2}\left(f\left(e_{i}\right)\right)$. Note that by (2^{\prime}) and Theorem 1 this is the unique way of defining φ. Define also $\mathrm{h}: \mathrm{M}_{1} \rightarrow \mathrm{M}_{2}$ by $h\left(e_{i}\right)=f\left(e_{i}\right)$.

Proposition 2. If $a \in L_{1}$, then $f(a)=h(a)$.
Proof. The case $a=e_{i}$ follows from definition. If $f\left(a_{j}\right)=h\left(a_{j}\right)$, then $f\left(\sum \propto_{j} a_{j}\right)=h\left(\sum \propto_{j} a_{j}\right)$. Now let $f(a)=$ $=h(a), f(b)=h(b)$. In this case
$f(a b)=f(a) f(b)=\ell_{2}(f(b)) f(a)-\ell_{2}(f(a)) f(b)=$ $=\ell_{2}(h(b)) h(a)-\ell_{2}(h(a)) h(b)=h(a) h(b)=h(a b)$
by Proposition 1.
Thus we have proved
Theorem 2. Each semilinear map (h, φ) with (2),(2') defines a homomorphism $f: L_{1} \longrightarrow L_{2}$ of free metabelian Lie algebras and conversely every homomorphism $f: L_{1} \longrightarrow L_{2}$ of Lie algebras has a unique representation by a semilinear morphism of modules.

By uniqueness the correspondence between morphisms of Lie algebras and semilinear morphisms is functorial. Starting from now we identify homomorphism $\mathrm{P}: \mathrm{L}_{1} \longrightarrow \mathrm{~L}_{2}$ with its semilinear representation (h, φ).
§ 2. Automorphismg of free metabelian Lie algebras. In this part we consider the case $L_{1}=L_{2}=L$ and $f=(h, \varphi) \in$ ϵ Aut L. By the corollary from Theorem 1 an automorphism f is identical on L / L^{\prime} iff $\varphi=1$. Let G be a group of all these automorphisms (IA-automorphisms in terms of [1]). It is clear that $G \subset$ Aut L and by [5] Aut L is a semidirect product of $G L(n, k)$ and G. By ($\left.2^{\prime}\right) f=(h, 1) \in G$ iff h is an automorphism of M as K-module, that is $h \in G L(n, K)$, and $\ell(a)=$ $=\ell(f(a))$ for all $a \in M$. If e_{1}, \ldots, e_{n} is a base of $M, \ell\left(e_{i}\right)=$ $=X_{i}$, then $h=\left(h_{i j}\right)$, where $h\left(e_{i}\right)=\sum_{j=1}^{m} e_{j} h_{j i}$ and

$$
\begin{equation*}
x_{i}=\ell\left(e_{1}\right)=\ell\left(h\left(e_{i}\right)\right)=\sum_{i=1}^{n} x_{j} h_{j i} \tag{3}
\end{equation*}
$$

This implies $h_{i j}=\sigma_{i j}+g_{i j}$, where $\sum_{i=1}^{n} X_{i} g_{i j}=0, j=1, \ldots$, n. Hence,

$$
h=E+T E S L(n, K), T=\left(g_{i j}\right)
$$

In particular for $n=2$ we have

$$
T=\left(\begin{array}{cc}
x_{2} t_{1} & x_{2} t_{2} \\
-x_{1} t_{1} & -x_{1} t_{2}
\end{array}\right) \quad t_{1}, t_{2} \in k\left[x_{1}, x_{2}\right]
$$

and
$I=\operatorname{det}(E+T)=\left(1+X_{2} t_{1}\right)\left(1-X_{1} t_{2}\right)+X_{1} X_{2} t_{1} t_{2}=1+$ $+X_{2} t_{1}-X_{1} t_{2}$, that is $t_{1}=X_{1} t^{\prime} t_{2}=X_{2} t$.Hence,

$$
T=\left(\begin{array}{ll}
x_{1} x_{2} t & x_{2}^{2} t \\
-x_{1}^{2} t & -x_{1} x_{2} t
\end{array}\right)=T(t)
$$

Note that $T(t) T\left(t^{\prime}\right)=0$ and thus for $E+T(t), E+T\left(t^{\prime}\right) \in G$ we have

$$
(E+T(t))\left(E+T\left(t^{\prime}\right)\right)=E+T\left(t^{4} t^{\prime}\right)
$$

Thus, we have proved
Theorem 3. If L is a free metabelian Lie algebra of rank 2, then Aut L is a semidirect product of $G L(2, k)$ and a group G of IA-automorphisms isomorphic to the additive group of $k\left[X_{1}, X_{2}\right]$.
§ 3. Epimorphisms of free metabelian Lie algebras. In this part we assume that for all s, r the group $G L\left(s, k\left[X_{1}, \ldots\right.\right.$ $\left.\ldots, X_{r}\right]$) acts transitively on unimodular rows (see [81). This is equivalent to the following fact: if $R=k\left[X_{1}, \ldots, X_{s}\right]$ and M is R-module such that $R^{s} \simeq M \oplus R^{p}$ then $M \simeq R^{s-p}$. The fundamental result of [8] shows that this condition is satisfied when $k=k_{0}\left[Y_{1}, \ldots, Y_{n}, Z_{1}^{ \pm 1}, \ldots, Z_{r}^{ \pm 1}\right]$, where k_{0} is a Dedekind
ring.
Let $L_{i}, K_{i}, M_{i}, m_{i}, \ell_{i}, i=1,2$, be as in $\S 1$ and f : $: L_{1} \rightarrow L_{2}$ an epimorphism, $f=(h, \varphi), r L_{1}=n, r k L_{2}=d$. Since L_{2} is projective it can be regarded as a retract of L_{1}, that is L_{2} is a subalgebra in L_{1} and there is a projection $f: L_{1} \rightarrow L_{2}$ identical on L_{2}, i.e. $f^{2}=$ f. By (2), Theorem 2 and the remark made after this theorem ρ is an idem potent endomorphism of $K_{1}=k\left[X_{1}, \ldots, X_{n}\right]$, where $\varphi\left(X_{1}\right)=$ $=\sum \varphi_{i j} X_{j}, \quad \varphi_{i j} \in k$. Thus φ is an idempotent endomorphism of a free k-module $k X_{1}+\ldots+k X_{n} \simeq k^{n}$ and $\operatorname{Im} \varphi \simeq k^{d}$ since L_{2} is free. By the remark made above $\operatorname{Ker} \varphi \simeq k^{n-d}$ and thus

$$
K=k\left[X_{1}, \ldots, X_{n}\right]=k\left[Y_{1}, \ldots, Y_{n}\right]
$$

for some Y_{1}, \ldots, Y_{n}, where

$$
\varphi\left(Y_{1}\right)=\left\{\begin{array}{l}
Y_{1}, i=1, \ldots, d \tag{4}\\
0, i=d+1, \ldots, n
\end{array}\right.
$$

Let $\propto=\left(\alpha_{i j}\right) \in \operatorname{GL}(n, k) \subseteq$ Aut K and $Y_{1}=\alpha\left(X_{i}\right)=\sum_{j} \alpha_{i j} X_{j}$, $i=1, \ldots, n$. Then the map $g, g\left(e_{i}\right)=\sum_{j} \propto_{i j} e_{j}$ defines an \propto-semilinear map (g, \propto) for

$$
\ell_{1}\left(g\left(e_{i}\right)\right)=\Sigma \alpha_{i j} X_{j}=Y_{i}=\propto\left(X_{i}\right)=\propto\left(\ell_{1}\left(e_{i}\right)\right) .
$$

Thus without loss of generality we can suppose from the very beginning that in (4)

$$
\varphi\left(x_{1}\right)=\left\{\begin{array}{l}
x_{1}, \quad 1=1, \ldots, d ; \\
0, \quad 1=d+1, \ldots, n
\end{array}\right.
$$

Let M_{2} be the augmentation ideal $\left(X_{1}, \ldots, X_{d}\right)=k\left[X_{1}, \ldots\right.$ $\left.\ldots, X_{d}\right], \operatorname{Imh}=M_{2}$, and $J=\left(X_{d+1}, \ldots, X_{n}\right) \triangleleft k\left[X_{1}, \ldots, X_{n}\right]$, $f=(h, \varphi)$, where φ from (4'). Then the diagram (2') looks
as

Note that by (4^{\prime}) $J M_{1} \subseteq$ Ker h and hence (5) induces a commutative diagram

Now M_{1}^{\prime} is a free $K_{2}=k\left[X_{1}, \ldots, X_{d}\right]$-module with the base $e_{i}^{\prime}=$ $=e_{i}+J M_{1}, l \leqslant i \leqslant n$, and by $\left(5^{\prime}\right) h^{\prime}$ is an epimorphism of free K_{2}-modules. As we have already noticed Ker h is a free K_{2}-module of rank $n-d$. Now we can identify M_{1}^{\prime} with $\sum_{i=1}^{\infty} K_{2} e_{i} \subseteq M_{1}$. Thus we choose in M_{1} a new base $w_{1}, \ldots, w_{n} \in \sum_{i=1}^{m} K_{2} e_{i}$ such that $h\left(w_{1}\right), \ldots, h\left(w_{d}\right)$ is a base for M_{2} and $w_{d+1}, \ldots, w_{n} \in \operatorname{Ker} h$. Moreover, $\operatorname{Ker} \varphi=J$. Since $X_{i}+m_{1}^{2}, 1=1, \ldots, n$ is a base of a free k-module m_{1} / m_{1}^{2} by (4°) we can also assume that

$$
H=\left(\begin{array}{c}
\ell_{1}\left(w_{1}\right) \\
\vdots \\
\vdots \\
\ell_{n}\left(w_{n}\right)
\end{array}\right) \equiv X \bmod J, \text { where } X=\left(\begin{array}{c}
x_{1} \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right)
$$

for we can al ways suppose that $\ell_{2}\left(h\left(w_{i}\right)\right)=X_{i}, i=1, \ldots, d$, and $w_{j} \in \operatorname{Ker} h$ implies $\ell_{l}\left(w_{j}\right) \in J$. Thus H is \mathbb{M}_{1}-modular (sea
[2],[7]).
Consider now a subgroup $D \subseteq G L\left(n, K_{1}\right)$ generated by $G L\left(n, K_{1}, J\right)$ (see [9]) and all matrices
$\left(\begin{array}{ll}A & U \\ 0 & B\end{array}\right), A \in G L\left(d, K_{1}\right), B \in G L\left(n-d, K_{1}\right)$.
Proposition 3. There exists $C \in D$ such that $C H=X$.
The proof in a more general situation will be given in Proposition 4.

Since $W_{d+1}, \ldots, W_{n} \in K e r h, J_{1} \subseteq K e r h$ by Proposition 3 for a new base $u_{i}=C w_{i}, i=1, \ldots, n$ in M_{1} we have

$$
\ell_{1}\left(u_{i}\right)=X_{i}, i=1, \ldots, n ; u_{j} \in \operatorname{Kerh}, j=d+1, \ldots, n
$$ and $h\left(u_{1}\right), \ldots, h\left(u_{d}\right)$ is a base for M_{2}. Thus we have proved

Theorem 4. Let k be a ring such that GL(s,k[X,\ldots $\left.\ldots, X_{1}\right]$) acts transitively on sets of unimodular columns for all s, r. If $f: L_{1} \longrightarrow I_{2}$ is an epimorphism of free metabelian Lie algebras over $k, r k L_{1}=n, r k L_{2}=d$, then L_{1} possesses a free base u_{1}, \ldots, u_{n} such that $f\left(u_{1}\right), \ldots, f\left(u_{d}\right)$ is a base for L_{2} and u_{d+1}, \ldots, u_{n} generate Kerf as an ideal. In particular, the theorem holds for $k=k_{0}\left[Y_{1}, \ldots, Y_{c}, Z_{1}^{ \pm 1}, \ldots, Z_{p}^{ \pm 1}\right]$, where k_{0} is a Dedekind ring (see [8]).

Corollary. Let k be as above with k_{0} a principal ideal ring, L a free metabelian Lie algebra over $k, r k L=n$, and P a retract of L, $r k P=d$ (see [2],[7]). If $f: L \longrightarrow P$ is a prom jection, then L possesses a free base u_{1}, \ldots, u_{n} with the properties of Theorem 4 such that in addition $f\left(u_{i}\right) \equiv u_{i}$ mod Kerf, $i=1, \ldots, d$.

Proof. By [2] P is free and $f(a)-a \in K e r f$ for all $a \in L$
since $f^{2}=f$.
Now we need to prove Proposition 3. Following [2] consider a more general situation: let $A_{0} \subset A_{1} \subset \ldots \subset A_{n} \subset \ldots$ be a chain of commutative rings, $l \in A_{0}$ and for all i

1) A_{i} is a retract of A_{1+1} with kernel $\left(X_{i+1}\right)$;
2) each X_{i} is not a zero divizor;
3) if $m_{1}=\left(x_{1}, \ldots, x_{i}\right) \triangleleft A_{i}$, then m_{i} / m_{i}^{2} is a free $A_{0}-$ module of rank $1 ;$
4) GL(t, A_{i}) acts transitively on sets of unimodular columns for all $t \geq 1$.

Proposition 4. Let H be a column of length $t \geq n$, that is an element of a free A_{n}-module $A_{n}^{t}, J=\left(X_{d+1}, \ldots, X_{n}\right)<A_{n}$ and

$$
\mathrm{H}=\mathrm{X}=\left(\begin{array}{c}
x_{1} \\
\dot{x_{n}} \\
x_{n} \\
\dot{0} \\
\dot{0}
\end{array}\right) \text { modJ }
$$

If H is M_{n}-modular then there exists $C \in D$ (definition D as in Proposition 3) such that $\mathrm{CH}=\mathrm{X}$.

Proof. The case $d=n$ is trivial. Suppose now that for $\mathrm{n}-1$ the affirmation has been proved. By induction (see [2]) for n we can suppose that $H \equiv X \bmod X_{n}$. Again by [2] there exists $C_{1} \in D$ such that $H_{1}=C_{1} H \approx X \bmod X_{n}^{3}$ and thus for some unimodular $Q \in \mathbb{A}_{n}^{t}$

$$
\left.Q \equiv\left(\begin{array}{c}
0 \tag{6}\\
\dot{i} \\
0 \\
\dot{0}
\end{array}\right)\right\}^{n} \quad \bmod x_{n}
$$

the product

$$
Q^{*} H_{1}=X_{n}
$$

By (6) and 4) as it is well known there exists $C_{2} \in G L\left(t, A_{n}\right.$, X_{n}) with Q as the $n-t h$ row. Hence by (6°) the n-th element in the column $\mathrm{H}_{2}=\mathrm{C}_{2} \mathrm{H}_{1}$ is X_{n} and still $\mathrm{H}_{2}=\mathrm{X}$ mod X_{n}. Eventually applying matrices

$$
\left(\begin{array}{ll}
U & \nabla \\
0 & W
\end{array}\right), \quad U \in G L\left(d, A_{n}\right), W \in G L\left(t-d, A_{n}\right)
$$

we obtain X. The proof is over.
In [5] it was shown that if L was a free algebra over a field in a nilpotent variety and P retract of L, then P was free and $\mathrm{L}=\mathrm{P} * \mathrm{~B}$. The following example shows that this condition is not satisfied in metabelian Lie algebras, though by [3] and [4] they are quite close to nilpotent algebras. Let L be a free metabelian algebra over a ring k with the base e_{1}, e_{2}. Define $f: L \longrightarrow L, f=(h, \varphi)$ as in $\S 1$ by (7) $\quad h\left(e_{1}\right)=e_{1}+X e_{2}-Y e_{1}, h\left(e_{2}\right)=0, \varphi(X)=X, \varphi(Y)=0$. Then $\mathrm{f}^{2}=\mathrm{f}$. Suppose that there exists a base $u_{1}=h\left(e_{1}\right), u_{2}$ in M such that $\ell\left(u_{1}\right)=X, \quad \ell\left(u_{2}\right)=Y$ and $h\left(u_{2}\right)=0$. By Theorem 3

$$
u_{1}=\left(1+X Y_{g}\right) e_{1}+Y^{2} g e_{2} \quad g \in k[X, Y]
$$

Via (7) this is not possible. Hence Imf is not a free factor of L .
§ 4. Homomorphisms of free metabelian $A_{q} A$-groups. Let $q \geq 0$ and $q \neq 1$. If C_{n} is a free abelian group with free generators X_{1}, \ldots, X_{n} consider a group ring $K=\mathbb{Z} / q \mathbb{Z} \quad C_{n}=$ $=\mathbb{Z} / q \mathbb{Z}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ with the augmentation ideal $m=$ $=\left(x_{1}-1, \ldots, x_{n}-1\right)$. Let M be a free K-module with the base e_{1}, \ldots, e_{n}. Define $\ell: M \longrightarrow m$ by $\ell\left(e_{i}\right)=X_{1}$ - 1. Following [1],[2] a free $A_{q} A-g r o u p ~ F$ of rank n is a group of all matrices
(8)

$$
\left(\begin{array}{ll}
a & 0 \\
b & 1
\end{array}\right) \quad a \in C_{n}, \quad b \in M, \quad \ell(b)=a-1
$$

The free generators of F are

$$
\left(\begin{array}{ll}
x_{i} & 0 \\
e_{i} & 1
\end{array}\right) \quad i=1, \ldots, n
$$

Note that by [1] F^{\prime} consists of all matrices (8) with $a=1$, or equally $\ell(b)=0$.

We are going to show that the results similar to those of $\S 1,3$ hold for metabelian groups. Let C_{1} be a free abelian group with the base $X_{1}, \ldots, X_{n} ; C_{2}$ with the base Y_{1}, \ldots $\ldots, Y_{p} ; K_{i}=Z / q \mathbb{Z} C_{i}, M_{i}, m_{i}, \ell_{i}, i=1,2$, correspond to free $A_{q} A-$ groups F_{1} and F_{2}. Let $f: F_{1} \rightarrow F_{2}$ be a group homomorphism. As in [1] define $\varphi: K_{1} \longrightarrow K_{2}$ and $h: M_{1} \rightarrow M_{2}$ by

$$
f\left(\begin{array}{ll}
a & 0 \tag{9}\\
b & 1
\end{array}\right)=\binom{\varphi(a), 0}{h(b), 1}
$$

Thus by (9) we define group homomorphism $\varphi: C_{1} \longrightarrow C_{2}$ which

- in its turn determines ring homomorphism $\varphi: K_{1} \rightarrow K_{2}$ an easy calculation based on matrix multiplication shows that h is a φ-semilinear homomorphism $h: M_{1} \longrightarrow M_{2}$. Note that by (9)

$$
\ell_{2}(h(b))=\varphi(a)-1=\varphi\left(\ell_{2}(b)\right)
$$

or equally, the following diagram is commatative ($9^{\circ \prime}$)

Conversely, if $\varphi: C_{1} \longrightarrow C_{2}$ is a group homomorphism, $h:$ $: M_{1} \longrightarrow M_{2}$ is a φ-semilinear morphism and ($9^{\circ \prime}$) is commutative, then by (9) the pair (h, φ) determines group homomorphism $f=(h, \varphi): F_{1} \longrightarrow F_{2}$. It is clear that this correspondence is one-to-one and is functorial.

Theorem 5. Let $f: F_{1} \rightarrow F_{2}$ be an epimorphism of free $A_{q} \AA$-groups, $q \geq 0, q \neq 1, r k F_{1}=n, r k F_{2}=d$. Then there exists a base z_{1}, \ldots, z_{n} in F_{1} such that $f\left(z_{1}\right), \ldots, f\left(z_{d}\right)$ is a base for F_{2} and z_{d+1}, \ldots, z_{n} generate Kerf as a normal subgroup.

Corollary. Let P be a retract of a free $A_{q} A-g r o u p ~ F$ with a projection $f: F \rightarrow P$. Then F possesses a base z_{1}, \ldots \ldots, z_{n} as in Theorem 5 and in addition $f\left(z_{i}\right) \equiv z_{i}$ mod Kerf, $i=1, \ldots, d$.

The proof follows immediately from freeness of P (see [2]).

Proof of Theorem 2. First we assume that $q=0$ or q is a prime. If $f: F_{1} \rightarrow F_{2}$ is onto as in $§ 3$ we can assume that

$$
\varphi\left(x_{i}\right)=\left\{\begin{array}{l}
x_{i}, i=1, \ldots, d, \tag{10}\\
1, i=d+1, \ldots, n
\end{array}\right.
$$

Put $J=\left(x_{d+1}-1, \ldots, x_{n}-1\right) \Delta K_{1}$. If $A_{i}=Z / q \mathbb{Z}\left[x_{1}^{ \pm 1}, \ldots\right.$
$\left.\ldots, x_{i}^{ \pm 1}\right]$, then by [8] the conditions 1) - 4) in § 3 , where X_{i} stands for $X_{i}-1$, are satisfied. Hence, as in the proof of Theorem 4 we can choose in M_{1} a new base u_{1}, \ldots, u_{n} such that if $f=(h, \varphi)$, then

$$
\begin{gathered}
\ell_{1}\left(u_{i}\right)=X_{i}-1, i=1, \ldots, n \\
u_{j} \in \operatorname{Kerh}^{\prime}, j=d+1, \ldots, n
\end{gathered}
$$

and $h\left(u_{1}\right), \ldots, h\left(u_{d}\right)$ is the base for M_{2}. By $(9),\left(9^{\prime}\right),\left(9^{\prime \prime}\right)$ and (10)

$$
z_{1}=\left(\begin{array}{ll}
x_{1} & 0 \\
u_{1} & 1
\end{array}\right)
$$

is the necessary base for F_{1} (see $[1,2]$). Thus in the case $q=0$ or q prime the theorem is proved.

Suppose now that $q=p^{t}$, where p is a prime, and $f: F_{1} \rightarrow$ $\rightarrow F_{2}$ as in the theorem. Let $N_{1} \triangleleft F_{i}$ be a verbal subgroup in F_{1} corresponding to the subvariety $A_{p} A \subset A_{q} A$. Then f induces $f^{\prime}: F_{1} / N_{1} \rightarrow F_{2} / N_{2}$. By the preceding results there exists a base $z_{1}^{\prime}, \ldots, z_{n}^{\prime}$ in F_{1} / N_{2} associated with f^{\prime}. By [2] there is a base z_{1}, \ldots, z_{n} in F_{1} such that $z_{i} \equiv z_{i}$ mod N_{1}. By the same argument $f\left(z_{1}\right), \ldots, f\left(z_{d}\right)$ is a base for F_{2}. Thus,

$$
f\left(z_{j}\right)=g_{j}\left(f\left(z_{1}\right), \ldots, f\left(z_{d}\right)\right), j=d+1, \ldots, n
$$

and hence,

$$
z_{1}, \ldots, z_{d}, z_{j} g_{j}^{-1}\left(z_{1}, \ldots, z_{d}\right), j=d+1, \ldots, n
$$

is the base we need.
Finally we have to consider the case of arbitrary $q>2$. Let q have a prime-power factorization $q=\Pi q_{i}$ with prime powers q_{i}. Note that q_{i} are coprime for distinct 1 . Let f,
$F_{1}, C_{i}, K_{i}, M_{i}, m_{i}, \ell_{1}, i=1,2$, be as above. Put $s_{i}=q q_{i}^{-1}$ and consider a $\mathbb{Z} / q_{j} \mathbb{Z} C_{i}$-module $s_{j} M_{i}$ with epimorphism of $\mathbb{Z} / q_{j} \mathbb{Z} \quad C_{i}$-modules

$$
s_{j} l_{i}: s_{j} M_{i} \longrightarrow s_{j} m_{i}
$$

As in [2d the group $F_{i j}$ of all matrices

$$
\left(\begin{array}{ll}
a & 0 \\
s_{j} b & 1
\end{array}\right), a \in C_{i}, b \in M_{i}, s_{j}(a-1)=s_{j} l_{i}(b)
$$

forms a free $A_{q_{j}}$ A-group with free generators

$$
\left(\begin{array}{cc}
x_{i} & 0 \\
s_{j} e_{i} & 1
\end{array}\right), i=1, \ldots, n
$$

The epimorphism $f: F_{1} \rightarrow F_{2}$ induces epimorphism $f_{j}: F_{1 j} \rightarrow F_{2 j}$ for all J. From a prime power case for every j there is a base $z_{1 j}, \ldots, z_{n j}$ in $F_{l j}$ such that images of the first d of them form a base in $F_{2 j}$, the others generate $\operatorname{Ker} f_{j}$ as a normal subgroup. Moreover, as it follows from the preceding case

$$
z_{i j}=\left(\begin{array}{cc}
x_{i} & 0 \\
s_{j} u_{i j} & 1
\end{array}\right), i=1, \ldots, n
$$

By [2] there exist free generators z_{1}, \ldots, z_{n} in F_{i} such that

$$
z_{i}=\left(\begin{array}{ll}
x_{i} & 0 \\
u_{i} & 1
\end{array}\right)
$$

and $s_{j} u_{i}=s_{j} u_{i j}$ for all i, j. The same argument shows that images of z_{1}, \ldots, z_{d} form a free generating set for F_{2}. Thus as in prime-power case we can construct the necessary base
$z_{1}, \ldots, z_{d}, z_{j} g_{j}^{-1}, j=d+1, \ldots, n$, where $g_{j}=g_{j}\left(z_{1}, \ldots\right.$ \ldots, z_{d}).

Acknowledgment.
I would like to express my thanks to the staff of Algebra Department of the Charles University in Prague for their hospitality.

References

[1] S. BACHMUTH: Automorphisms of free metabelian groups, Trans. Amer. Math. Soc. 118(1965), 93-104.
[2] V.A. ARTAMONOV: Projective metabelian groups and Lie algebras, Izv. Akad. Nauk SSSR, ser. mat. (submitted).
[3] Ju. A. BAHTURIN: Two remarks on varieties of Lie algebras, Mat. Zametki 4(1968), 387-398.
[4] V.A. ARTAMONOV: Semisimple varieties of multioperator algebras, Izv. Vysx. UXebn. Zaved., Matematika 11(1971), 3-10; 12(1971), 15-21.
[5] V. A. ARTAMONOV: Nilpotence, projectivity, freeness, Vestrik Mosk. Univ. 5(1971), 34-37.
[6] M.S. BURGIN: Free epimorphic images of free linear algebras, Mat. Zametki 11(1972), 537-544.
[7] V.A. ARTAMONOV: Projective metabelian Lie algebras of finite rank, Izv. Akad. Nauk SSSR, Ser. Mat. 36(1972), 510-522.
[8] A.A. SOUSLIN: Projective modules over polynomial rings are free, Dokl. Akad. Nauk SSSR 229(1976).
[9] H. BASS: Algebraic K-theory, Benjamin, New York, Amsterdam, 1968.

Department of Mechanics and Mathematics
Moscow State University
117234 Moscow
U S S R
(Oblatum 25.10.1976)

