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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

18 ,1 (1977) 

THE CATEGORIES OF FREE METABELIAN GROUPS AND LIE ALGEBRAS 

V.A. ARTAMONOV, Moscow 

Abstract: Homomorphisms of free metabelian A A-groups, 

q2:0, and free metabelian Lie algebras over a commutative as
sociative unital ground ring k are studied. It is proved that 
the group of automorphisms of,a free metabelian Lie algebra 
L of rank 2, identical on L/L is isomorphic to the additive 
group of the polynomial group k CX,YJ . Further; If f: L^—,* 
—* L0 is an epimorphism of free A„A-groups or metabelian 

Lie algebras over a ring k a k^ L X-p... ,Xr, X ^ ,...,Xft J, 

where k^ is a Dedekind ring, rkL^ = n, rkL2 = d, then L^ pos-
9esse9 a free generating set zi>-**iz

n such that f(z^),... 

...^(z^) is a free generating set for L2 and zd+p...,zn ge

nerate Ker f as a normal subgroup or an ideal. 

AMS: 17B30, 20E10 Ref. 2.: 2.723.533,2.722.32 

Key words: Free metabelian group, free metabelian Lie 
algebra, automorphism, free generating set. 

The present paper concerns homomorphism3 of free metabe

lian A A-groups, q£0, and free metabelian Lie algebras over 

a commutative associative unital ground ring k. In § 2 we 

show that the group of automorphisms of a free metabelian Lie 

algebra L of rank 2, identical on L/L (lA-automorphisms in 

terms of [13 ) is isomorphic to the additive group of the po

lynomial group k [X,YJ . For comparison the similar group for 
2 

a free metabelian A -group consists ox inner ajtomorphisms 
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(see U3>. 

In § 3 and 4 we show that if f: L1—** Lg. is an epimor-

phism of free A A-groups or metabelian Lie algebras over a 

ring k * k0C Xlf...fXrf 3Tp+1 f...,Xs ], where kQ is a Dede-

kind ring, rkL-, = n, rkLp. = d, then L1 possesses a free gene

rating set zi>*••*z
n such that f (z1),... ,f (zd) is a free ge

nerating set for L^ and Za+1,# •• 12
n generate Ker f as a normal 

subgroup or an ideal. In particular, let P be a retract of a 

free metabelian A A-group or Lie k-algebra L with a project

ion f: L—*• Pf k as above with kQ a principal ideal ring# Then 

by 121 F is free and L possesses a free generating set z-p... 

...fzn such that f(zi)a z^ mod Kerf in addition to the proper

ties mentioned above. 

A consideration of metabelian Lie algebras is motivated 

by the following reason. If k is a field, chark = 0, then any 

proper subvariety of metabelian Lie algebras is nilpotent (see 

133)• Moreover, this variety is semisimple,[4J# By t5J if L 

is a free nilpotent algebra over a field with a retract P then 

P is a free factor of L. A trivial example in § 3 shows that 

this does not hold for metabelian Lie algebras* 

It is worthy of mention that the similar results for ab

solutely free linear algebras were exhibited in T6J. 

§ 1. Homomorphlsms of free metabelian Lie algebras. First 

we need a representation of free metabelian Lie algebras of 

finite rank n. Let K = k CXlf...fXnl be a polynomial ring 

with the augmentation ideal 911s* (Xlf...fXn) and M a free 
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K-module with the base e-| , . .*,en« Define an epimorphism of 

K-modules 

Z: M—• 771 , ZU±) « X1# 

Then M can be regarded as a k-algebra with the multiplicat

ion 

(1) ab = ̂ (b)a -X(a)b, a, bcM. 

A direct calculation shows that M is a metabelian Lie algeb

ra . Put 

L -*«tac.M)i,(a) & S «> ±x±9 oc^ek ? 

Theorem 1. L is a subalgebra in M and a free metabe

lian Lie algebra with the base ei,...,en. 

The proof under assumption that k is a field was given 

in [73. But this restriction on k was not used in the proof 

and is not necessary. 

Corollary, L' =- Kerl. 

Proof. If a, bcL, then by (l) £(ab) = 0. Conversely, 

if 

a = 2 cO-ie.̂  mod L', 00.* € k, 

and £(a) = 0, then «&(a) =- 2£j oo^X^ implies oc^ - ... -

= ot n = 0 and a 6 L'. 

Consider now.two free metabelian Lie algebras L-̂ , Lg, 

over k with the bases eit»»»ie
n and Un,«.«fu^. Let 

1 a k tX-̂ ,• • • ,XRj , Kg = k lY^,»«»,Y£j 

and Mi,Ki,
/)Wi, Jt^ be associated with L^, i a 1,2, by Theo-
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rem 1. Given any homomorphism cp i K^—>• K̂  of k-algebras 

such that 

(2) cp(Xl) = S V l J T , , c p i j £ k , 

consider a y-semil inear homomorphism h: M^—> M2 of modu

les making commutative the following diagram 

Mi T—* ^ 1 

(2') h I i y 
мг IГ+шг 

Proposition 1. h is a homomorphism of Lie algebras, de

fined by (1), and hdi-^SLg* 

Proof. If a,beM
1
 then by (l) and (2') 

h(ab) -*h(X
1
(b)a - ^

1
(a)b) = cp(>e

i
(b))h(a) - cp (^(a) >h(b) = 

=- y€2(h(b))h(a) - ^z(h(a))h(b) = h(a)h(b). 

Also by (2) and Theorem 1 we have hiL^&Lg. 

Now we show that every homomorphism f: L-^—* Lg> can be 

extended to a unique semilinear homomorphism (h, cf) with the 

properties (2),(2'). In order to do this define cp : K^—• K2 

as <f^) - -^->(f(ei)). Note that by (2') and Theorem 1 this 

is the unique way of defining <f> . Define also h: M^—*• M2 

by h(ei) = f(et). 

Proposition 2. , If a€Llf then f(a) = h(a). 

Proof. The case a = ei follows from definition. If 

f(a j) = h(a J, then f(-£ 06 .a*) = h( £ oc *a.). Now let f(a) = 

- h(a), f(b) = h(b). In this case 
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f(ab) = f(a)f(b) = ^2(f(b))f(a) - .-€2(f (a) )f (b) = 

= ^2(h(b))h(a) - ^2(h(a))h(b) = h(a)h(b) = h(ab) 

by Proposition 1. 

Thus we have proved 

Theorem 2. Each semilinear map (h,y) with (2), (2') 

defines a homomorphism f: L-^—+ L2 of free metabelian Lie 

algebras and conversely every homomorphism f: L-^—> L2 of 

Lie algebras has a unique representation by a semilinear 

morphism of modules. 

By uniqueness the correspondence between morphisms of 

Lie algebras and semilinear morphisms is functorial. Start

ing from now we identify homomorphism f: L^—• L2 with its 

semilinear representation (htqp). 

% 
§ 2. Automorphisms of free metabelian Lie algebras. In 

this part we consider the case L-̂  = L2 = L and f = (h,^p) € 

e Aut L. By the corollary from Theorem 1 an automorphism f 

is identical on L/L' iff 9 = 1 . Let G be a group of all the

se automorphisms (iA-automorphisms in terms of tl3). It is 

clear that G o Aut L and by t 5J Aut L is a semidirect pro

duct of GL(n,k) and G. By (2') f = (h,l)e G iff h is an auto

morphism of M as K-module, that is heGL(n,K), and X(a) =-= 

=- ,£(f(a)) for all a6 M. If e1,...,en is a base of M, £(e±)* 

a X^, then h = ^nii^> where h(e^) - .*-** einii anci 

(3) Xi == JL(ex) = £(h(e±)) = . ^ X^h^ 

fn 
This implies h±* = oPy • g-y, where ^ 2 ^ X±g± . = 0 , j = 1,.. 

...,n. Hence, 
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h =- E • T i SL(n fK), T » ( g . ^ ) 

In part icular for n = 2 we have 

/Vl Vz \ 
T =H J t l f t г e k [ X l f X г J 

" ¥ l "Xl*2 

and 

1 = det(E + T) » (1 • X 2 t 1 ) ( l - Xyt2) • X 1 X 2 t 1 t 2 =- 1 • 

* X 2*l " Xl*2» t n a t i s *1 ~ x l t > t 2 = X2* ' H e n c e t 

/ x i ¥ x|t \ 
T -*( = T ( t ) 

\-xft -X-^t' 

Note that T(t)T(t') = 0 and thus for E + T(t)f E + T(t')e G 

we have 

(E + T(t))(E + T(t')) =* E + T(t*- t') 

Thus, we have proved 

Theorem 3. If L is a free metabelian Lie algebra of 

rank 2, then Aut L is a semidirect product of GL(2fk) and a 

group G of IA-automorphisms isomorphic to the additive group 

of kf X l fX 23 . 

§ 3. EDimorphiams of free metabelian Lie algebras. In 

this part we assume that for all sf r the group GL(s,k CXlf... 

...fXr3 ) acts transitively on unimodular rows (see £81). This 

is equivalent to the following fact: If R =- k tXlf...,Xa3 and 

M is R-module such that R8-* M © Rp then M-*R3~P. The funda

mental result of C 8-1 shows that this condition is satisfied 
,. ±1 -M 

when k = kQ I Ylf...fX , Zlf...,Z lf where k is a Dedekind 
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ring. 

Let Li,Ki,Mi, n^9 £it i » 1,2, be as in § 1 and f: 

. L ^ — ^ ^ an epimorphism, f = (h,<^), rkL-L = n, rkLg • d. 

Since L^ is projective it can be regarded as a retract of 

L-̂ , that is L^ is a subalgebra in L^ and there is a project

ion f: L 1 — • L2 identical on L^, i.e. f
2 = f. By (2), Theo

rem 2 and the remark made after this theorem y is an idem-8 

potent endomorphism of K^ * k[X1,...,Xnl , where Qp(Xi) « 

~ ^ ^ijXj» ^ i j 6 k # Thus ^ is an lde^POtent endomorph

ism of a free k-module kX-̂  • ... + kXn--*k
n and Im Gp « k sin

ce L^ is free. By the remark made above Ker<y^ kn and thus 

K -» k [X1,...,Xn3 * k Ult...tXnl 

for some Y l f . . . , Y n , where 

{
Y i f 1 *= l | . . . , d ; 

0 , i = * d + l , . . . , n . 

Let oC » ( < - < i j ) £ GL(n,k)£ Aut K and X± =- oc (X±) = 2& co i j X , , 

i = l , . . . , n . Then the map gt g(s±) s ? o C i j e j def ines an 

oc - semi l inear map (g ,oc) for 

^ 1 ( g ( e i ) ) * 2? ^ i j X j ~ Y i a °G(Xi> * o c ( X 1 ( e 1 ) ) . 

Thus without l o s s of genera l i ty we can suppose from the very 

beginning that in (4) 

{*i» * = If* •• fd» 

0 , i = d • l , . . . , n . 

Let TUg be the augmentation idea l ( X l f . . . ,Xd) <i k t X l f . . . 

. . . , X d . ] , Imh = M2, and J » ( X d + 1 , . . . ,Xn) *a k C X l f . . . , X n J f 

f * (h,Cf ) , where <f from U ' ) . Then the diagram ( 2 ' ) looks 

- 149 -



aa 

(5) r 
\ 

-* ж 

Г 
1TІ2 

9 

Note that by (4 ) JM^S Ker h and hence (5) induces a commu

tative diagram 

(5 ' ) 

м{ = M /̂JM -̂

tí 

ť *1 
-*>1ћx/Jlflx = ш2 

1 

% њ 

Now M-̂  is a free K^ = k tX-,,... jX^l-module with the base e/ = 

= e± + JM^, l-fcifcn, and by (5') h' is an epimorphism of free 

K2-modules. As we have already noticed Ker h is a free Kp-mo-

dule of rank n - d. Now we can identify M^ with .2L K2

eis M
l * 

Thus we choose in M± a new base w^, •. • ,w
n
 6 . S . -^e^ such 

that hCw^),... thCw^) is a baa f or M„ and w
d + 1

, . . . ,w
n
6 Ker h. 

Moreover, Ker cp = J. Since X* * 1H?, i = l,...,n, is a base 

of a free k-module ^ / ^ i f hy ( 4 ) we can also assume that 

ŕ i ( w i \ 

H = 5 X mod J, where X 

W*n>/ 
for we can always suppose that ^(hCw^)) = X i* * s ^ , M ^ » 

and wj€ Ker h implies .-^(wJtf J. Thus H i s TW -̂modular (see 
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C2i f m). 
Consider now a subgroup D£8L(nfK^) generated by 

GL(nfK-L>J) (see £91) and all matrices 

/ A U\ 
I J f A6GL(dfK1), Be©L(n - d.K-^. 

Proposition 3 . There ex is t s CeD such that CH -* X# 

The proof in a more general s i tua t ion wi l l be given in 

Proposition 4 . 

Since w ^ p . . . f w n e Kern, JM^SKerh by Proposition 3 far 

a new base u i =* Cwi, 1 = l , . . . , n in Mj we have 

^ ( t ^ ) « X^f i a l , . . . f n ; UjC Kerhf j » d • l f . . . , n , 

and h(uj),•••fh(u(|) Is a base tor M^. Thus we have proved 

Theorem 4. Let k be a ring such that GL(s,k £Xlf... 

...,XpJ ) acts transitively on sets of unimodular columns tar 

all sf r» It f: LJL—*l£ is an epimorphism of free metabeli-

an Lie algebras over k, rkL^ = n, rkL2 = d, then L^ possesses 

a free base u^,...,^ such that f(u^)f•••ff(u£) is a base for 

L^ and u
(j+i»***>

u
n generate Kerf as an ideal. In particular, 

the theorem holds for k =- k0 tYlf...fXc,Z£ f...,Zp j f where 

kQ is a Dedekind ring (see t8]). 

Corollary,, Let k be as above with kQ a principal ideal 

ring, L a free metabelian Lie algebra over k, rkL = n, and P 

a retract of Lf rkP =-= d (see t23fC73). If f: L—**P is a pro

jection, then L possesses a free base U£f...fu with the pro

perties of Theorem 4 such that in addition f (ujjs U| mod Kerf 9 

1 SE 1,... ,d. 

Proof. By £21 P is free and f(a) - a £ Kerf for all ae L 
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since T" * f. 

Now we need to prove Proposition 3. Following [23 consi

der a more general situation: let A
Q
c AjC ..

#
c A c ... be a 

chain of commutative rings, le A
Q
 and for all i 

1) A
i
 is a retract of A

i + 1
 with kernel (

x

i +
i); 

2) each X.̂  is not a zero divizor; 

3) if % * (X
1
,...,X

i
) <i A

if
 then "Tfl^/%,\ is a free A

Q
-

module of rank 1; 

4) GL(t
f
A

i
) acts transitively on sets of unimodular columns 

for all t>i
# 

Proposition 4
#
 Let H be a column of length t^n, that 

is an element of a free Aĵ -module A
n
, J » (X

d+i
,... ,X

n
) <-t A

n 

and 

HвX « 

*1 

X
n
 I mođJ 

If H is THjj-modular then there exists Cc D (definition D as 

in Proposition 3) such that CH =- X# 

Proof* The case d = n is trivial. Suppose now that for 

n - 1 the affirmation has been proved. By induction (see £22) 

for n we can suppose that HsX mod Xn# Again by 121 there ex

ists Ĉ fc D such that H^ » C^H-sX mod X^ and thus for some un

imodular Qfc An 
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mod Xw 

пf 

(6) ф -

the product 

(6' ) 

By (6) and 4) as i t i s well known there exists Ĉ t* GL(tfA3 

X0) with Q as the n-th row. Hence by (6 ' ) the n-th element 

in the column H^ = C^E^ i s Xn and s t i l l H^-B X mod Xn* Even

tually applying matrices 

/ U T ] , U€GL(dfAn), WeGL(t - dfAn> 

we obtain X. The proof is over* 

In £53 it was shown that if L was a free algebra over a 

field in a nilpotent variety and P retract of Lf then P was 

free and L = F*B. The following example shows that this con

dition is not satisfied in metabelian Lie algebras, though 

by 132 and [41 they are quite close to nilpotent algebras* 

Let L be a free metabelian algebra over a ring k with the 

base elfe2# Define f: L—*• L, f = (hfy ) as in § 1 by 

(7) h(ex) » ex • Xe? - Yelf h(e2) « Of <p(X) -* X, <y(Y) « 0. 

Then tr = f. Suppose that there exists a base u-̂  * hfe-^), u2 

in M such that JM\ix) =- Xf JUt^) -* Y and hdig) = 0. By 

Theorem 3 

ux * (1 • XYg)ei • Y2ge2 ge k LX,Y] 

Via (7) this i s not possible. Hence Imf i s not a free factor 

of L. 
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§ 4. Homomorphiams of free metabelian AqÂ groj|Ds.. Let 

q>0 and q=H. If C^ is a free abelian group with free ge

nerators X-L,...,Xn consider a group ring K » Z/qZ Cn « 

« Z / q Z CX^ f...,X~ ] with the augmentation ideal 771=* 

a (X^ - l,...,Xn - 1). Let M be a free K-module with the ba

se elf...fen. Define Z : M — > 7 1 t by £ (e±) = X± - 1. Fol

lowing tl]ft23 a free A A-group F of rank n is a group of all 

matrices 

(8) f J aeCn, beM, X(b) -= a - 1. 

The free generators of F are 

i » lf...fn. c;:) 
Note that by (11 F consists of all matrices (8) with a = lf 

or equally -6(b) = 0. 

We are going to show that the results similar to those 

of § 19 3 hold for metabelian groups. Let C^ be a free abe

lian group with the base X^,...fXn; Ĉ  with the base X-̂ ,... 

...jŶ ,; K^ a Z/qZ Cif Mif 7#if JL^% i = lf2, correspond to 

free AQA-groups F^ and Fp* *-et ^
: * i — * % **e a ^ r o U D nomo"" 

morphism. As in [11 define cp : K-^—* K~ and h: M^—* Mg by 

(a 0 \ /'tfCaMx 
(9) f L J « I , , 1 

Vb l y U W . l ' 
Thus by (9) we define group homomorphism <f : C-^—* Cp which 

* in its turn determines ring homomorphism <y : K-^—> K«» An 

easy calculation based on matrix multiplication shows that h 

is a ^-semilinear homomorphism h: M^—*• M2. Note that by (9) 
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( 9 # ) >e 2 (htb)) =* 9 ( a ) - 1 « <f(Zx(h)l 

or equa l ly , the fol lowing diagram i s commutative 

M-̂  > 4ft 

(9") h l I ? * I l 1 • 
«2 : — - ^z 

л2 

Conversely, i f cp : C-^—* C? i s a group homomorphism, h: 

: Bin—fr-WU i s a <y-semil inear morphism and (9 ) i s commu

t a t i v e , then by (9) the pair (h f cp) determines group homomor-

phism f = ( h f c p ) : F^—* F 2 . I t i s c lear that t h i s correspon

dence i s one-to-one and i s functor ia l . 

Theorem 3 . Let f: F-̂ —** F^ be an epimorphism of f ree 

A .i-groups, q-^O, q # - l , rkF^ = n, rkF2 ~ 3 . Then there e x i s t s 

a base z 1 , . . . f z n i n F^ such that f(z-L) f •• * f f ( z d ) i s a base 

for F« and z^+i i•••t 2

n generate Kerf as a normal subgroup. 

Corollary. Let P be a r e t r a c t of a f ree A A-group F 

with a p r o j e c t i o n f: F—-»>P. Then F p o s s e s s e s a base z^>»»« 

.•• f z n as i n Theorem 5 and i n a d d i t i o n t(z^)m z^ mod Kerf, 

1 = 1 , . . . , d . 

The proof fo l lows immed iately from freeness of P ( s e e 

C21). 

Proof of Theorem 5. F i rs t we assume that q = 0 or q i s 

a prime. I f f: F-̂ —*• F 2 i s onto as i n § 3 we can assume that 

f X^, i -5 l f . . • f d , 

(10) <?<X£) =H 

1 , i ~ d + ! , • • . , n . 

Put J = ( X đ + 1 - l f . . . f X n - l ) -d Kx. I f Â  » 2 / q Z ГX*',. 
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...jXJ" 2 tthen by t&2 the conditions 1) - 4) in § 3f where 

X^ stands for X^ - lt are satisfied. Hence, as in the proof 

of Theorem 4 we can choose in M-̂  a new base u-L,...fun such 

that if f » (hf 9 ) t then 

^(u^) s Xj - 1, i -» l,...,n; 

UjCKerh, j » d + lt...,nf 

and hfu^) f ...jhtu^) is the base for Mg. By (9)f (9') ,(9") and 

(10) 

4 

xt 0 

i s the necessary base for F± (see [ 1 , 2 ] ) . Thus in the case 

q a 0 or q prime the theorem i s proved., 

Suppose now that q -=- p f where p i s a prime, and f: F -̂*-

—> Fp a s i n *n e theorem. Let N -̂<l F̂  be a verbal subgroup in 

F^ corresponding to the subvariety A Ac A A. Then f induces 

f'; F^/NJL—* F2^N2* B y t n e P r e c e d i n S results there exists a 

base z { , . . . t z n in F /̂N^ associated with f'. By 122 there i s 

a base z 1 , . . . , z n in F̂  such that z^s z^ mod N-̂ . By the same 

argument f ( z ^ ) t . . . t f ( z ^ ) i s a base for F2. Thus, 

f ( z j l « g j ( f ( z 1 ) f . . . f f ( z d ) ) f i a d + l t . . . , n 

and hence, 

Zj > f . . . f z d f z* gj ( z ^ f . . . f z ^ ) , j a d • l , . . . , n 

is the base we need. 

Finally we have to consider the case of arbitrary q>2. 

Let q have a prime-power factorization q * TT q^ with prime 

powers q^. Note that q^ are coprime for distinct i. Let f, 
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.F.J ,C
i
,K

i
,M4

v
, fll^, ̂j,, i = 1,2, be as above. Put s^ » qq^ 

and consider a Z/q 4 Z C^-module 3 ^ with epimorphism of 

Z /q * Z ^-modules 

S j ^ : s^-^Sj % . 

As in C23 the group Fj* of all matrices 

( a °\ 
J , a 6 C i f beM.p Sj(a - 1) * S j - ^ b ) 

V 8 j b l ' 

forms a free A A-group w i th f ree generators 

X^ 0 

•ajei y 

, x -* i. | • • • | n. 

The epimorphism f: F ^ — * F^ induces epimorphism f^: F ^ J — * F
2 1 

for all j. From a prime power case for every <j there is a ba

se
 z
ij»***»

z
nj

 i n
 ^ij such that images of the first d of them 

form a base in Fp-t, the others generate Ker tx as a normal 

subgroup. Moreover, as it follows from the preceding case 

Г1 °) • 
V
 S 4U4 4 1 ' 

z
ij

 =
 1 / , i s l,...,n. 

By [21 there exist free generators
 z
i»»-»f

z

n
 *

n
 % such that 

and Sj
u
i
 a 8;jui-| ^ o r a 1 1

 -*t i» T n e a a m e
 argument shows that 

images of z-j,...,z
d
 form a free generating set for F

2
. Thus 

as in prime-power case we can construct the necessary base 
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z^,...,z(|, Zjgj , J = d • l,...,n, where g* - gjCz-^,... 

•••tzoy * 
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