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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

18,1 (1977)

TERNARY RINGS ASSOCIATED TO TRANSLATION PLANE

Josef KLOUDA, Praha

Abstract: It is well known that an affine plane is a
translation plane if and only if there exists a quasifield
coordinatizing it. Simple condition for planary ternary ring
with zero coordinatizing a translation plane is deduced by
Klucky and Markovd in [4]. We shall define a J-ternary ring
or JTR to be a PTR that 30e¢S such that
T(a,0.,c)= T(a,b,c) implies T(a,0,y)= T(a,b,y) VY yes
T(0,a,c)= T(b,a,c) implies T(O,a,y)= T(b,a,y) V yeS.

In (5] Martin defines an intermediate ternary ring (ITR).
Strucurally, the JTR lie between the PTR and ITR. The purpo-
se of this note is to deduce a necessary and sufficient con-
dition that a given JTR coordinatizes a translation plane.
This generalizes the main results of [4] and [51],

Key words: Planar ternary ring, translation plane, in-
termediate ternary ring, generalized Cartesian group.

AMS: 20N10 Ref. Z.: 2.722.9

A coordinatization of a projective plane: We shall give

a coordinatization to a projective plane of order n. Let S

be any set of cardinality n. Let o be any element which is
not in S and let 0eS. We pick one point L and one line £
joining through L in the plane. For any Med denote by'ﬁ the
set of all lines containing M. Let m+>(m) be a bijection of
Su{o} onto £ such that [wl=£. Let x > [x] be a bijection of
sufw! onto T such that [c0l=£. Let y —+ ( O,y) be a biject-

ion of S onto [01\4L}. We denote by AuB (anb) the line join-
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ing two distinct points A,B (the common point of two dist-
inct lines). Let o€ relyt S—» S be two mappings. Then to e-
very point P off £ we assign coordinates (x,y) if and only if
Ps[x]n((ecl(x)) u(0,y)) . We shall now dualize the above
construction in the following sense. Let ¢ +>»[0,c]l be a bi-
jection of S onto (6)\ LL3} . Then to every line p oft T we
assign coordinates [m,cl if and only if p = (m)u ([&Z(m):lr‘l
nlo,e .

Planar ternary rings:

Definition 1: Let S be a set containing two different
elements at least and let ternary operation T be given on it.
An ordered pair (S,T) will be called a planar ternary ring
or PTR if it holds:

(1) VYa,b,ceS 3!xeS T(a,b,x) = ¢
(2) VYa,b,c,deS;xeS T (x,a,b) =T(x,c,d)
(3) VYa,b,c,des; a*c3(x.y)es2 T(a,x,y) = b, Tlc,x,y) = 4d

An intermediate ternary ring on ITR ( see [51,p.1187)
is a PTR (S,T) such that (I;) and (I,) holds.

(Il) T(m,a,y)= T(m,b,y) = ¢, a%b implies T(m,x,y)=c

V xeS
(12) T(a,x,y) = T(b,x,y) = c, a%b implies T(m,x,y) = c

Vnes

A J-ternary ring or JTR is a PTR (S,T) such that there
exists OeS where
(Jl) T(m,0,a) = T(m,x,a) implies T(m,0,y) = T(m,x,y)

Y yes
(Jz) T(0,x,a) = T(m,x,a) implies T(O,x,y) = T(m,x,y)

Vyes
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Let (S,T) be a PTR. Then (S,T) defines a projective pla-
ne sr(S,T) as follows.
Points: (x,y),(m), (@) ; m,x,yeS, ¢o not in S
Lines: [m,cl:= {(x,y)| x,yeS, T(m,x,y)=c?

[x1:= {(x,y) | yest
{ol: = {()} ullm)| mest?

In [2),03J(Cp. 114-115),[5)(p. 1186) there was shown that
a(sS,T) is a projective plane. Thus a solution in (3) is uni- .
que.

Proposition 1: Let ar be a projective plane. Then there
exigsts a JTR ( S,T) such that ar (S,T) i8 isomorphic to o .

Proof: Let the projective plane ¥ be coordinatized as
above by elements from a set S. Define a ternary operation by
T(m,x,y) = ¢ if and only if (x,y) is on [m,c] . Then it is ob-
vious that the (S,T) is a JTR. One has only to check (1),(2),
(3),(J1),(J2\ in turn.

Remark: Let (S,T) be a JTR. Then there are mappings <
®«,: S—> S such that V¥x,y€S T(«(x),0,y) = T (e0;(x),x,y)

¥V m,yes T(O,e,(m),y)=T(m, e (m),y)
and such that for every point (x,y) and every linelm,cl] in
w(s,T) is (x,y) = [ x]n((acl(x)) ufo,y))

tm,cl-(m)u(lwz(m)) n [o,eD

Proposition 2: Let (S,T) be an ITR. Then (S,T) i8 a

JTR. .
Proof: The proposition is a direct consequence of Theo-
rem 6 in [5], p. 1188.

Vertically transitive planes: (S,t) is said to be the

dual ternary system of PTR (S,T) if c = T(m,x,t(x,m,c))
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VY m,c,xeS or equivalently y = t(x,m,T(m,x,y))
Vm,x,yes.

Proposition 3: The dual of a JTR s a JTR.

Proof: The proof is straightforward.

In the following we shall denote by ji the solution of
the equation t(x,0,0) = t(x,a,a) for each a€S\ {0} and by

ji the solution of the equation T(x,0,0) = T(x,a,a) for

each a€S \{0}; additionally we define ji = jg = 0. Thus for
each aes is t(31,0,0) = t(3],a,a) and 1(32,0,0) = T(52,2,a).
Now let us introduce in S two binary operations +1,+2 by
virtue of

1 .1 -
a +1 b: = T(a,]art(Jarorb ))
a+, b= t(a,32,7032,0,6))  VYa,bes

Remark: It can be easily verified that

(4) C+ a=a+ 0=0+,a = a+,0=a YV aeS
(5) VYa,beS 31xes a+ x=b
Ya,beS J!lyes a+,y=b

Definition 2: Let (S,T) be a PTR. The projective plane
w(S,T) is said to be a vertically transitive plane (by (4],
p. 620) if for each x,y,zeS there exists a translation T of
the affine plane (82,-([m,c] | m,ceS} udlx)| xeS3) such that
(x,y)% = (x,2).
' Let (S,T) be a JTR and (S,t) its dual. By (1)
@2 ¥y —> T(0,0,y) ’ ”;02: c +>» t(0,0,c) are bijective map-
pings and @,@, = @, = id.

Proposition 4: Let (S,T) be a JTR. Then the projective

plane or (S,T) s a vertically transitive plane if and only if
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(6) ¥m,c,x,yeS (T m,x,y +, ¢) = T(m,x,y) + (oﬁl +y c)Ia1
Proof. I. Suppose first that (S,T) (6) holds. We
shall see that (S,+,) is a loop. By (4),(5) it is suffici-
ent to show that Vu,ceS 31veS v +, ¢ = u.
Let a +2 c=Db +2.c and let m,xeS such that x40,
T(m,0,a) = T(m,x,b). Then
T™(m,0,a +, c) = T(m,0,a) +; (0¢J"+2 c)ﬁ -
= T(m,x,b) + (0?"+2 c)% = T(m,x,b +5 c) and by (Jl)
T(m,0,a) = T(m,x,a) = T(m,x, blhence a = b. Now let ueS.
Choose m,x,yeS such that x#0O .
T(m,0,u) = T(m,x,y +y c) and denote
(o,v) := [m,T(m,x,y)]1 n [O0). Then there is T(m,0,v) =

9
= T(m,x,y), T(m,0,u) =T(m,x,y +, ¢)= (m,x,y) +, (ogbz + ot

= T(m,0,v) +1 (0‘5>2 +y c)@1=T(m,O,v +y c) from here v +y C =
= U,
Thus, the map 7,: SZ-—> 82 defined by
(A e
(x,y) = (x,y +5 c) is a translation. Since (0,0) ¢ =
= (0,c), the ar(sS,T) is a vertically transitive plane.
II, Let or(S,T) be a vertically transitive plane. Then
for each aeS there is a translation %, mapping (0,0) into
7, T
(0,a). Then (y,y) %= (y,y +y a) for each yeS hence (0,y) &=
L4
= (0,y +, a) for each yes and (x,y) Y = (X, +, a) for
%a, ®2 R
each x,yeS. It is obvious that [0,0]1 “= [0,(0°%+, a)?)
) L3
this implies [m,c] * = [m,c + (O‘Dz +5 a)P’J . Hence,
T,
(x,y) € [m,T(m,x,y)] for each m,x,y€S from here (x,y) % €
L7 ®
€[mT(mx,y)1% then (x,y +, alem,T(mx,y) +; (oP’+2a)'J
e e
consequently T(m,x,y +, a) = T(m,x,y) +; (o’+2 a) !

for each m,x,y,aeS.
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Corollary 4.1: Let (S,T) be a JTR and let x (S,T) be
a vertically transitive plane. Then (S, +1) N (8,4—2) are
groups and (S,+,) is isomorphic to (5,4—2) .

Proof: Consider translations ¢ : (0,0)+> (0,a),
6: (0,0)— (O,b), *: (0,0) > (0O,c). Then
(0,(a +, b) +, c) = (0,009 % o (0,00P°% .
(0,a +5, (b 4, ¢)) .

The second result follows from (6). In particular, for
every a,bes (a +y b)?1 = T(0,0,a +y b) =
= T(0;0,a) + (0% +, )% = ™ + (02 +, ) . Since
for each y,a,bes ¥+, (a +, b)={(y +y a) +, b, we have
y# 4 (2 4 Ca s b 2 (y 4, Cat, b0P
=(y+, a)™ + (%2 +5 5) 2 (y? + (P2 +5 %) +
+ (0% +5 )%,
Setting y = 0%2 , we have
“(o%2 +, (a4 b N%1= (0% +, a)® + (o2 +, p)™ .

Remark: The group of all translations of a vertically
transitive plane 9r(S,T) is Abelian if and only if (S,+l) is
commutative.

Now let us introduce two binary operations *1r % by
virtue of

T(m,x,0)= m *1X Y m,xeS

t(x,m,0) = x *,m VYmxeS

Corollary 4.2: Let (S,T) be a JTR and let o (S,T)be a
vertically transitive plane. Then

(7) VYm,x,y¢§ T(m,x,y)=m X (O?" +, y)p1

. 4 Pa
t(x,m,y) = x oM+, (o + y)
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Proof: Let as set y = O in (6). Then
( OQQ.

T(m,x,c) = m 1x H +, c)% for each m,x,ceS.

Proposition 5: Let (S,T) be a JTR. The projective pla-
ne o (S,T) is a vertically transitive plane if and only if
(8) (S,+1), (S,+2\ are groups
(9) there exists an isomorphism @ : (5,+ )—>(8,+1) such

that Y m,x,y€S T(m,x,y) = m ¢;x + yq, .

Proof: I. Let (8),(9) hold for (S,T). Then for each m,x,
Y,ceS T(m,x,y +, c)s m X+ (y +y )= n X+ (y"+lc‘?)-
=(m 1%+ y‘?) + c?= T(m,x,y) + c?

)

, we have (0sba +, c)P" = 0+ c?

thus c? = (O% +, c)p" for each ceS therefore T(m,x,y +, c)=

Setting me x=0, y=0

= T(m,x,y) + (0f2 +5 )™ for each m,x,y,C€S.

II. The second part follows immediately from Corollary
4.1 and Corollary 4.2.

Corollary 5.1: Let (S,T) be a JTR such that
T(0,0,y)= y for each y6S. . Then the projective plane
a(s,T) 18 a vertically transitive plane if and only if
(1) (S,+1) is a group
(11) V m,x,yes T(m,x,y )= m LI 4

Proof: I. Vm,x,y,cés T(m, X,y + c)=m 1% 4 (y +1c)a
=(m o)X +; y) +;¢ = T(m,x,y) + c.

Hence 9r(S,T) is a vertically transitive plane.

IT. If ar(S,T) is 4 vertically transitive plane, then
by Proposition 5 ( s,+13 is a group and there exists an iso-
morphism @: (S,+,)=>(S,+)) such that T(m,x,y)=m ¢ X + ad
for each m,x,yeS.This yields then y= T(0,0,y)= O +ly"f= v

for each yeS hence T(m,X,y)=m Xt Y for each m,x,YeS.
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Corollary 5.2: Let(S,T) be a JTRand (S,t) its dual.

Let o (S,T) be a vertically transitive plane, then there
exists an igomorphism ¢ :(S,+2) — ( S,+l) such that
Ymx,y€S T(m,x,y) = moux + y¥,

tlx,m,y) = X e,m +, y?"' ) Merx +l(x-2m ¥ =0

Proof: Since it holds T(m,x,t(x,m,0)) = O for each m,x &
€ S, we have me x +, (x-2 m)? = 0. Since it holds T ( m,x,t(x,
m,y))=y for each m,x,ye S, we obtain me x + (t(x,m,y))?sy
thus (t(x,m,y) %= G max Hys= (x-zm)9 +1y from what you
say t(x,m,y) = X eom +2y9"’ .

Definition 3: Let S be a set +,¢ two binary operations
on S. (S,+,*) will be called a generalized Cartesian group
(see [4),p. 620) if S has two distinct elements at least and
if it holds:

(10) (s,+) is a group
(11) VYa,b,c€S; asb 3! xes -xa + xb = ¢
(12) Va,b,ceS; a¥b3IxesS ax - bx = ¢

Propoposition 6: Let C:=(S,+,) be a generalized

Cartesian group and let ¢: S — S be a bijection such that
0Y= o. If we define T(C,q), (m,x,y) = mex + y¥
for each m,x,y€e S then (8,T (C,9)) <8 a JTR and
- (s,T(C, %)) 1is a vertically transitive plane.
Proof: The proof is straightforward. One has only to
check (1) ,(2),(3),<J1) 1 (3 ,(8),(9) in turn.
Proposition 5 and Proposition 6 now imply the next
Theorem 1: Let (S,T) be a JTR. Then the projective plane
or (S,T) <e a vertically transitive plane if and only if

(2) Ceimy( S,+1,'1) i8 a generalized Cartesian group
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(%) there exists a bijection ¢g: S—»S such that 0¥9=0,

T=T(C,ew) .

Translation planes: First we give some general remarks.

Let us investigate a projective plane or= (P,L) . Let us
distinguish a line £ . Then by an affine plane ar (£) we
shall as usual mean the restriction of o to the incidence
structure (PN 2 ,{mN(mA L)) meLN{£3}%),The points from

P\ &£ will be called proper, the points of £ improper or ,
directions. A projective plane o= (P,L) is said to be an
£ -transitive plane if the group of all translations of ar(£)
transitively operates on the set of all points of sr(£), Let
u, v be affine lines of ar(£) with different directions,
then the projective plane & is a £ -transitive plane if and
only if the group of all translations of or(£) transitively
operates on the lines u, v.

Proposition 7: Let C=(S,+, ¢ ) be a generalized
Cartesian group and @ : S—> S a bijection such that 0%= 0.
Then the projective plane = (S,T (C, @)) is a [o0] -
transitive plane if and only tif
(13) Vx,aeS 3xe€S Vmes
mx'~- Ox“= ma - Oa + 00 - mO + mx - Ox

Proof: I. It suffices to prove that tne group of all
translations transitively operates on proper points of the
line [0,02 In this case it suffices to show that for each
line [al there exists a translation * such that [OJ'¢= [a].
Define a mapping ’ta: (x,y)—> (x,; (-0x"+ Ox + y")""’
with x €S uniquely determined by (13) (see (12)) . Clearly

T, is bijective. Further it is obvious that the image »f
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the 1lne {x]1 is the line [ x"]. Let us consider a line
Imel. If (x,y) € [ mec), then T(CL, ) (m,x,y) =

mx + y‘fs c. Hence it is .
T(C,e) (m,x; (-0x"+ ox + y")""’) =
=(mx"- Ox)+ Ox + y9=(ma - 0a + 00 - mO + mx - Ox ) +
+0x + yJ= (ma - 0Oa + 00 - m0) + ¢
or equivalently (x, (-0x"+ Ox + y‘f)”"’) €
€ [m,ma - 0a+00-mO0+cl]. If x= x_ for some x€ S, then
necessarily a = O therefore 't'a= id. This implies A is a
translation. Setting x=0 in (13), we obtain mO - 00 =ma -Oa
for each me S then O = a hence [Olra'e [a) and consequent-
ly #(s,T(C,¢)) is aleo) -transitive plane.

II, Conversely, suppose that o (S,T(C,®)) is alel-
transitive plane. First of all, evidently for a=0 mx - Ox =
= ma - Oa + 00 - mO + mx - Ox for each m,x€ S. Thus suppose
a%0O. For x=0 we have ma - Oa= ma - Oa + 00 - mO + mx - Ox
for each me S. Thus suppose x s O. Now choose any element
kesN{0%} . By (12) there is x~ such that
kx"- Ox = ka - Oa + 00 - kO + kx - Ox
Further let «, be a translation for which (0,0)% =
= (a, (-0a + 00 + 09)%" ") . Then
(0,0),(x, (-kx + ko + 08)¥"V € [ x,x0+ 0913,

(0,0),(a, (~0a + 00 + 0%4)¥" " € [ 0,00 +0%91,

(a (-0a + 00 + 09)¢= ") , (x] (-0x"+ ox - kx + ko + 09)¥™ e
€ [x,ka - 0a + 00 + 0¢]

(x, C-kx + ko + 09)9"") ,(x; (~ox"+ ox - kx + ko + 0% ¥ e
e (0,0x - kx + k0o + 091 .

Thus, (x, ( -kx + kO + 0‘4)?'1)% = (%, (-0x "+ Ox - kx +

+ kO + O")?'d) hence [xl‘z"- [x7). For mwoO is
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O= mx - Ox"=ma - Oa + 00 - mO + mx - Ox.

Thus let be mé SN4{ 0% . Then

(%, (-mx + mO + 0")9’4) e [0,0x - mx +mo + 0¥,

(x; (-0x"+ Ox -~ mx + mO + 0?)"'4)5 [0,0x - mx + m0 + 0%1n
nlx7]. Thus, (x, (-m0 + mO + 04)‘?'471“' -

=(x; (-0x "+ Ox - mx + mO + O")‘f'q) .

But TCC,q) (m,0,0)= mo + 0% =

=T (C,g) (mx, (-mx + mo + 0%9)9"") and then it follows
necessarily T (C,¢) (m,a, (-0a + 00 + 09)%-1) =

=T (C,g) (mx; (-Ox™+ Ox - mx + mO + 0")?'4),hence

ma -0a+00+0f = mi- 0x™+ 0x - mx + mo + 0¥ consequent-
ly mx - Ox’a ma - Oa + 00 - mO + mx - Ox

Thus Proposition 7 is proved.

Corollary 7.1.: Let(S,+,+) be a generalized Cartesian

group such that the condition (13) holds. Then the group
(s,+) i8 Abelian.

Proof: The proof of the preceding corollary depends on
the obvious fact that the group of all translations of a(el]-
transitive plane is Abelian.

Proposition 8: Let € = (S,+, «) be a generalized
Cartesgtian group such that there exists e € S where for each
X€ S e Xwe .0, Further let @¢: S—» S be a bijec-
tion such that 09 = O . Then the projective plane
r (s, TCC,e)) is a Le0)l-transitive plane if and only if
(14) ¥x,a€S Ix€S ¥YmeS mx - mx = ma - mO

Proof: I. First we note that by (12) for every a€ S \4et}
and for every be S there exists exactly one x € S such that

ax - ex= b - e0 it holds if and only if ax - eO= b - eO,
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ax = b, This implies that for each a¢ S\4{e} and for each
be S there exists exactly one x €S such that ax = b. Define
a mapping ,: (x,y) > (x;y) with x€S uniquely determin-
ed by (14). Clearly @, is a bijective. Further it is obvious
that the image of the line [x] is the line [x"]. Let us con-
sider a line [m,cl. If (x,y)€[m,cl, then
T (C,c) (m,x,y) = mx + yq= c. Hence it is
T(C,x) (mox/y)=mx+ y¥ = ma - mO + mx + y"gma - mo + ¢
or equivalently (x;y) € [Lmma - mO + ¢c]. If x"= x for some
x€S then by (14) a= O, %, = id. This implies «;, is a tran-
slation. Setting x = O in (14), we have mO = ma for each me€ S
hence LOJ’r“‘ = Pal] and consequently o (s,T(C,))
is a [eol-transitive plans.

II. Let :rr(S,T(C.,q)) be a [o] -transitive plane. Set-
ting m=e in (13), we obtain ex - Ox = ea - Oa + 00 - eO +
+ ex - Ox then -Ox = -0a + 00 - Ox hence mx - Ox'= mx - Oa +
+ 00 - Ox= ma - Oa + OO0 - mO + mx - Ox for each m€ S and by
Corollary 7.1 mx = ma - mO + mx therefore mx - mx = ma - mO.

Theorem 1 and Proposition 7 now imply

Theorem 2: Let ( S,T) be a JTR. Then the projective pla-
ne o (s,T) i8 a [00) -transitive plane if and only if
(z) C:=(S,+l,'1 ) 18 a generalized Cartesian group
(£2) there exists a bijection @: S—>8 such that

0%=0, T=T(C,e)
(¢2¢) V x,aes 3xeS Ymes

Mmeyx =4 00X =mea= 0ea )04 0—yme)0 +ymeyx— 00y x
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