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COMMENT AT IONES MATHEMATICAE TJNIVERSITATIS CAROLINAE 

18,1 (1977) 

A NEW METHOD FOR THE OBTAINING OF EIGENVALUES OF VARIATIONAL 

INEQUALITIES OF THE SPECIAL TXPE 

(Preliminary communication) 

Milan KU&ERA, Praha 

Abstract: Let A be a linear completely continuous ope
rator in a Hilbert space H, K a cone in H, (I a penalty ope
rator corresponding to K. Under certain assumptions, there 
exist functions Xt, u£ Ce c < Ot+&) f Xcc E , u e e H) 

starting in a given eigenvalue A 0 and eigenvector uQ of A, 
satisfying the equation A^u^ - Aug • e/S u6 = 0 and con
verging to some eigenvalue X— and eigenvector u„ of the 
variational inequality. 

Key words: Eigenvalues, variational inequality, opera
tor of penalty. 

AMS: 47H99 Ref. 2.: 7.978.46 

Let H be a real Hilbert space with the inner product 

(.,.), K a closed convex cone in H, A a linear symmetric com

pletely continuous operator of H into H. Suppose that A has 

only simple eigenvalues* We shall consider the following pro

blem: 

(I) ueK, 

(II) ( Au - Au, v - u)> 0 for all v € K, 

where <X is a real parameter. A real number X is said to 

be an eigenvalue of the variational inequality (I),(II), if 

there exists a nontrivial u satisfying (I),(II). In this 
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case, u i s said to be the corresponding eigenvector of the 

variational inequality ( l ) , ( l l ) . I t can be proved that i f 

X i s an eigenvalue of ( I ) , ( I I ) with the corresponding e i -
o *0 genvector U€ K , then a l l the corresponding eigenvec

tors are on the half-l ine tu f t > 0 only. Especially, the fo

llowing definition i s reasonable. 

Definition 1. We shall say that A i s a boundary e i 

genvalue and interior eigenvalue of the variational inequa

l i t y ( I ) , ( I I ) i f there exists the corresponding eigenvector 

u e?K and ucK 0 , respectively, of ( I ) , ( II )# We shall say 

that X i s a boundary (with respect to K) eigenvalue and 

interior (with respect to K) eigenvalue of the operator A 

i f there exists the corresponding eigenvector u * £ K and 

uc K°, respectively, of the operator A* 

Let us consider a nonlinear completely continuous ope

rator /J of H into H la penalty operator corresponding to 

K) satisfying the following assumptions: 

41) u = 0 i f and only i f ue K; 

(2J C(3u - £ v, u - v)> 0 for a l l u, v 6 H; 

(3J 0> i s differentiable on H - K in the sense of ir^chet; 

<4) i f ueK°, v*K, then ( /3v f u)*0; 

(5) i f 6 n
> 0 , u n e f f i ( n = - l , 2 , . . . ) and the sequence 

4 e n ( l u n i i s bounded, then 4€. n f ^ ^ i contains a strong

ly convergent subsequence; 

(6). for each fixed utH - K, e > 0, a linear operator 

£'(u) i s symmetric and A - e$ ' (u) has only simple eigen-

it£\ We denote by dK and K° the boundary and interior of K, 
respectively. 
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values. 

Moreover, we shall consider the following assumption about 

the connection between the solution of the nonlinear equa

tion with the penalty and the corresponding linearized equ

ation ( R > O , A 2
> A 1 > 0 are given numbers): 

If X e < Al9A%> , e £ < 0,R >, ueH - K, vc H, luR » 

* l l v l U l , 
(XL) 

(i> Xn - Au • e/J u » 0, 
( i i ) X v - Av •%/&'(u)(v) » ^tu for some real (U, , 

then (u,v) + 0. 

Theorem 1. Let X be interior eigenvalue of A, 

X an eigenvalue of A corresponding to the eigenvector 

u { o ) ^ K, Bu(o)H * 1, 0 < J l ( l ) ^ A ( o ) . Suppose that there i s 

no boundary eigenvalue of A in the interval < X , X v # 

Let the assumptions ( 1 - 6 ) be fu l f i l l ed and let (NL) hold 

with A± « * a ( 1 ) , A ^ m A ( o ) , R » +oo . Then there ex

i s t differentiable functions Xs , ug on < 0,+ co ) such 

that XQ « A ( o ) , uQ » u C o )
r a e i s decreasing and the 

following conditions hold for a l l 6 2 0: 

(a) l|u€« « 1, u £ i K, A,(1)-c a £ < ^ l ( o > , 

(b) X^u - Aug • e j . u * 0 , v 
( } ( } * 

Moreover, X0 *> &1° (as <£ — • •<») and u^ —» ul?' 
9 X0 0 0 * n -*> 

(for some sequence <£ e n l , £ n > 0 , e n — > * o o ) , where 

P l ( l ) - c A, ( o ) < - a ( o ) , u ( o ) € 3K, X(°} i s a boundary e i -
vO OO CO 

genvalue and xi£ i s the corresponding eigenvector of ( I ) , 

*#) > ano:—---denotes the strong and weak convergence, 
respectively. 
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( I I ) . I f i g n } i s an a rb i t ra ry sequence such that S n > 

> 0 , en—> * 0 5 f u«—=*• u , then u ^ i s also the eigen-e n °° 
vector of ( I ) , ( I I ) corresponding to &<£ and u ^ e d K , 

U — > u 

For a trivial illustration, we can consider the follow

ing example. (More complicated examples will be discussed in 

tlj, § 5.) Consider the Sobolev space H -= f|(<0,1 >) with 

the inner product 

(u,v) « J u'v'dx, 

and the cone K =*-{ueH; u(xi)>0, i =- l,...,n|, where x^ € 

€ (0,1), i =- l,...,n, are given. Define the operators A and 

I&* ( occ <0,D) by 
/ X / 

(Au,v) * J u v dx for all u, v£ H, 

*&6utv) s • .SJutxj)! u (xi)v(xi) for all u, v € H„ 

If n = 1 (i.e. K is a half-space), then all assumptions of 

Theorem 1 can be verified for the operator (I =* ft . (The 

condition (NL) holds with A ^ » 0, A 2 =- • oo , R =- -nao*) 

For n .>l the assumption (3) is not fulfilled for (I =- ft0» 

In this case, the assumptions of more complicated Theorem 2 

emulated below are 

* fJ0 (see [13, § 5). 

Let us consider a penalty operator [J which does not 

satisfy the condition (3). We shall suppose that there ex

ists? a sequence (3 of completely continuous operators 

formulated below are satisfied for /i » (S± and (I » 

**#) See p. 207 Footnote 
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such that 

(7) if -Cu.^ is bounded, then 4 (I ^nl contains a 

strongly convergent subsequence; if v^—> u, then 

jl^—./Ju. 

Theorem 2. Let X , A be interior eigenvalues 

of A, A an eigenvalue of A corresponding to the eigen

vector u ( o ) # K, | |u ( o ) l l • 1, 0-< A ( 1 ) < A(o)«-- JLi2h Suppo

se that there i s no boundary eigenvalue of A in the inter

val < A ( l ) , A ( 2 ) > . Consider that (I f u l f i l s ( 1 ) , (2 ) , 

U ) , ( 5 ) , ( 6 ) and £ ( n ) for each fixed n f u l f i l ( 1 ) , ( 3 ) , U ) , 

( 5 ) , (6 ) . Suppose that for each R>0 there exists nQ such 

that (NL) i s valid with R and A-, - A ( l ) , A 2 =- A ( 2 ) for 

each (i , n>n . Let the condition (7) be sat i s f ied . Then 

for each € 2 - 0 there ex i s t s at least one couple Xt , u g 

satisfying the condition (b) and 

(a') lu 6 l l - 1 , u £ ^ K, A ( l ) * A e < A ( 2 ) . 

Moreover, there exists a sequence -f e n ? such that e n > 0 

€ n - * * 00 , A g — » a £>>, u i n - » «£>>, where A ( ^ e 

« ( A ( l ) , A ( 2 ) ) , u(
<

o)6 d Kf A^o ) i s a boundary eigenvalue 

and u^° i s the corresponding eigenvector of ( l ) , ( l l ) . If 

i € n} i s arbitrary such that e^> 0, fc^-—-* + 00, A t —»* A ^ , 

u,£ -^-H*^) then A ^ i s also the boundary eigenvalue and u^ 

the corresponding eigenvector of ( l ) , ( I I ) , A ^ e ( A ^ f 

If A has inf ini te ly many of interior eigenvalues then 

our theory ensures the existence of inf ini te ly many of boun

dary eigenvalues of ( I ) , ( I I ) . The obtained eigenvectors are 

- 209 -



not simultaneously e igenvectors of A. 

The proof of the abstract re su l t i s based on the abs tr 

act impl i c i t funct ion theorem ( s e e C l ] , § 3 ) . 

R e f e r e n c e 

t l ] M. KU&ERA: A new method for the obtaining eigenvalues 
of var ia t iona l i n e q u a l i t i e s . Branches of e igen
values of the equation with the penal ty . To ap
pear. 
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fieskoslovensko 

(Oblatum 5 . 1 . 1977) 
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