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MEAN VALUE THEOREM FOR CONVEX FUNCTIONALS

J. GWINNER, Mannheim

Abstract: A mean value theorem for convex functionals,

defined on general real linear spaces, resp. on real linear .
topological spaces is established. As an application the Li-
pschitz continuity of convex functionals is studied.

Eey wordg: Mean value theorem, convex functionals,
subdifferential, Lipschitz continuity.

AMS: 26A51,26A96, 4THO5, 26A16  Ref. Z.: 7.518.2

In this note we present a mean value theorem for convex
functionals on general real linear spaces, resps on real 1li-
near topological spaces. This result extends recent work of
Wegge [7]) to infinite dimensions.

To give a simple application of this analogue of the
classical mean value theorem in convex analysis we deal with
Lipschitz continuity of convex functionals. We modify the ar—
guments of Kolomy [3] and obtain a Lipschitz bound without
assuming GAteaux differentiability. LeF us note that a more
complicated calculation of this estimate has already been
given by Orlicz and Ciesielski [5]. Moreover we directly de-
rive another Lipschitz bound, established by Ekeland and Te-
mam in [1], from a simple estimate of the subgradient.

Let us refer to Rockafellar [ 6] for definitions and no-
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tations of convex ansalysis.

Theorem A. Let E be a real linear space. Let f: E —
—> (=00 ,+00 ] be a convex functional, and let the restric-
tion £ |(a,b] be finite and lower semicontinuous in the
closed line segment [a,b]lc E (a%b). Suppose, the open li-
ne segment (a,b) is contained in the relative interior of
dom f. Then there exist a point X e (a,b), and a linear func-

tional § e 3 £(X) which satisfies
(1) £(b) - £(a) = <§,b - ad .

Proof. With d = £(b) - £(a) we introduce a convex
function ¢ by
@(t) =f[a+tb=-all=-d-t,teR .
Clearly we have < (0) = £(a) = (1), and in virtue of lo-
wer semicontinuity some ¥ which can be chosen in (0,1) ex-

ists such that
) ¢@® £gt), vtero,l.

This inequality remains velid for all t ¢ R because of
convexity of the function ¢ . Now by extension we obtain s
linear functional J such that d = {(J',b - a) holds. With
¥=a+T(b-a), M=a+ R(b=-a) and the convex functio-
nal g, defined by

g(x) = £(x) =<{dx -a) , xeE

inequality (2) reads
(3) gX)£g(x), VYxeM.

Let D denote the domain of g, set E; = span (D-D)e0O
belongs to the algebraic interior of D - X relative to E,,
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and M - ¥ is contained in Ey. Thus, if a subgradient with
certain properties is constructed in the algebraic dual E;'L,
then we obtain the desired subgradient in E’ by extension.
Therefore, without any loss of generality we can assume that
Ey = E and % is an algebraic interior point of D.

The following sets in R x E

A=4{(r,x)| xeD, r>g(x)?
B =4(s,y) | yeM, s2£g(%)}

are convex and dis.joi.nt. One can show - sea the proof of the
subdifferentiability theorem in convex analysis [2, p. 23] =
that the algebraic interior of A is not empty. By the basic
separation principle (cf. [2, p. 15]) a pair (o, §) €

e(R x E'J\N£(0,0)} exists such that for any (r,x)e A and
any (s,y)e B

(4) @-r+{f,x>2@-S+* F,y>
holds. Obviously @ = 0, indeed @ > O is valid, since
(g(X),X)e B, and (g(X) + €,%) belongs to the algebraic inte-
rior of & for any € > O. From (4) we conclude that
{§,b=-a>=0, and go-lge 3 g(¥). Hence
(5) T=0lg+o
is a subgradient of f at ¥, and satisfies (1),

If E is endowed with a linear topology we can guarantee
the continuity of the functional constructed above under the

usual interior point and continuity assumptions. More preci-

sely we have the following

Theorem B Let E be a real linear topological spacee.
Let the convex functional f: E —> (~00,+ c0] be finite and
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continuous in the closed line segment [a,b1c B (a%b).
Suppose, the open line segment (a,b) is contained in the to-
pological interior of dom f. Then there exist a point X €
€ (a,b) and a linear continuous functional ?e 3 £(X) which
satisfies

£(b) - £(a) = <§E,b-ad>.

Proof. We show that the linear functional § defined
in (5) is continuous. Indeed, it is bounded above on some
neighborhood of %X, for X is a topological interior point of
dom £, and g is a subgradient of the continuous functional
£ at ¥, '

Now let us turn to Lipschitz continuity of convex real-
valued functionals in normed linear spaces.

Let B(x,,R) = {xeE “x - x,l< R} denote an open ball
in the normed linear gpa;e; E, Let the real-valued convex func-
tional £ be defined and bounded above by some constant K in
the ball B(xo,R). From the boundedness above it follows that
£ is continuous in B(x,,R} (cf. [2, p.82]). Fix an arbitrary
re(0,R), choose xeBix,,r), he B with |hl = 1. Then for
any t € (O,R = r) the point x + th belongs to B(x ,R), and for
any § € 9f(x) - contimuous subgradients exist in virtue of
continuity - we calculate

. ~ 1 -
(6)  AgN=oup <E,n> 4oup {3 [fx+tn) £(x)1}

Since by convexity
£f(x + th) - £(x) & £(x + th) + f.(Zxo -x) - Zf(xo)

£2[M - f(xo)l
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holds, we obtain by letting t —> R-r

sup {lg h)§ e 32(x), xeB(xo,r)} éﬁ:z_,;” - £lx )] =c.

Theorem B immediately implies the Lipschitz contimuity of £
in B(x,,r) with constant C (cf. [ 3, p.42], [5, p. 336/3371).

The same reasoning shows that the hypothesis of Gite-
aux differentiability of the convex functional f in [4, Th.l,
p. 78] can be dropped, and this result can be stated in the .
following more general waYe

Proposjition. Let X, Y be real normed linear spaces.
Let F: B(x,,R)—> Y be a mapping which is Glteaux differen-
tiable in B(xo,r) (0<r<R). Furthermore let a convex funcwe
tional f£: B(x,,R)—> R be given. Assume f is bounded abo-
ve in the boundary of B(x,,R) by some constent M. If P sa-
tisfies

I #'(x) ! £ sup {ﬂf“ | § e Bf(x)}

for every xeB(xo,r), then

sup {IF° (01 | xeBlxy,rd} 4 ZE-[u - 2(x )] =c

holds. Moreover, F and f are Lipschitzian in B(x,,r) with
constant C.

If moreover a lower bound m for the convex functional
£ in B(x,,R] 1s known, then (6) yields at once

M-m .
R"’L c .

sup {" §Il[ § € or(x)xe B(xo.r)} €
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And Theorem B implies Lipschitz continuity of £ in B(xo,r)

with this constant (cf. [1, p. 12/13] for a more complicated

argument ).
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