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MEAN VALUE THEOREM JOR CONVEX JUNCTIONALS 

J. GWINNER, Mannheim 

Abstract: A mean value theorem for convex functionals, 
defined on general real linear spaces, resp. on real linear 
topological spaces is established. As an application the Li­
ps chitz continuity of convex functionals is studied. 
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In this note we present a mean value theorem for convex 

functionals on general real linear spaces, resp» on real li­

near topological spaces. This result extends recent work of 

Wegge [7] to infinite dimensions* 

To give a simple application of this analogue of the 

classical mean value theorem in convex analysis we deal with 

Lips chit z continuity of convex functionals. We modify the ar­

guments of Kolomy [30 and obtain a Llpschitz bound without 

as3uming Gateaux differentiability. Let us note that a more 

complicated calculation of this estimate has already been 

given by Orlicz and Ciesielski [5j. Moreover we directly de­

rive another Lipschitz bound, established by Ekeland and Te-

mam in [1], from a simple estimate of the subgradient. 

Let us refer to Rockafellar 163 for definitions and no-
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ta t ions of convex ana lys i s . 

Theorem A. Let E be a real l inear space. Let f: E —> 

—+> ( - co , + vo 3 be a convex funct ional , and l e t the r e s t r i c ­

t i o n f | [ a , b l be f i n i t e and lower semlcontinuous i n the 

closed l i n e segment t a , b l c E (a+*b) . Suppose, the open l i ­

ne segment (a ,b ) i s contained i n the r e l a t i v e in ter ior of 

dom f. Then there e x i s t a point x e ( a , b ) , and a l inear func­

t iona l jr e d f ( x ) which s a t i s f i e s 

(1> f ( b ) - f ( a ) * < f ,b - a> . 

Proof. With d =* f ( b ) - f ( a ) we introduce a convex 

function <p by 

y ( t ) » f t a ^ t ( b - a ) ] - d * t , t « R . 

Clearly we have <j>(0) » f(a) - 3>(l), and in virtue of lo­

wer semieontinuity some X which can be chosen in (0,1) ex­

ists such that 

(2) < y ( t ) ^ g > ( t ) , V t e t . 0 , 1 3 . 

Th is inequal i ty remains va l id for a l l t c R because of 

convexity of the function <p * Now by extension we obtain a 

l inear functional <f such that d » <d",b - a > holds^ With 

x » a • t ( b - a ) , II * a • R (b - a) and the convex funct io ­

nal g f defined by 

g(x) -a f ( x ) - <cT,x - a > , x e E 

inequal i ty (2) reads 

(3 ) g ( x ) £ g ( x ) , V x e M . 

Let D denote the domain of g, set E, -* span (D - D). 0 

belongs to the algebraic interior of D - x relative to E^, 
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and M - x is contained in E^. Thus, if a subgradient with 

certain properties is constructed in the algebraic dual Ei, 

then we obtain the desired subgradient in E ' by extension. 

Therefore, without any los9 of generality we can assume that 

E^ s E and x is an algebraic interior point of D. 

The following set3 in 51 x E 

A *'((r,x)| xeD, r>g(x)? 

B »-l(s,y) | ycM, 3^g(x)J 

are convex and diajoint . One can ahow - 3ee the proof of the 

subdifferent labi l i ty theorem in convex ana-lysis £2, p* 23 3 -

that the algebraic in ter ior of A i s not empty. By the basic 

separation principle (cf. 12, p. 15]) a pair ($->, f ) 6 

6 ( R x E ' ) \ i (0,0) I exis ts such that for any ( r , x ) e A. and 

any ( s ,y )e B 

(4> <p • r + <f ,x >Zf* S • < ? , y > 

hold9. Obviously q> > 0, indeed ^>> 0 i s val id, since 

(g (x) ,x )6B, and (g(x) • e,x) belongs to the algebraic i n t e ­

r io r of A for any e >• 0. From (4) we conclude that 

<§ ,b - a>= 0, and ^ f f e 3 g ( x ) . Hence 

(5) f « <p~Xf • <r 

is a subgradient of f at X*, and satisfies (l). 

If E is endowed with a linear topology we can guarantee 

the continuity of the functional constructed above under the 

usual interior point and continuity as9umption3. More preci­

sely we have the following 

Theorem B. Let E be a real linear topological space* 

Let the convex functional f: E —> (-a?,--- ool be finite and 
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continuous in the closed line segment [ a t b ] c l (a-J-b). 

Supposey the open line segment (a,b) i s contained in the to ­

pological Interior of dom f. Then there exist a point x 6 

e (a,b) and a linear continuous functional f e 3 f(x) which 

sat i s f ies 

f(b) - f(a) » < f ,b - a> . 

Proof. We show that the linear functional f defined 

in (5) Is continuous. Indeed, i t is bounded above on some 

neighborhood of xt for x i s a topological interior point of 

dom fy and f i s a subgradlent of the continuous functional 

f a t ? . 

Now let us turn to Lipschita continuity of convex real -

valued functionals in normed linear spaces. 

Let B(xQfR) * -(xcE | l x - x 0 I < R} denote an open ball 

in the normed linear space E. Let the real-valued convex func­

tional f be defined and bounded above by some constant K in 

the ball B(x0,R). irom the boundedness above i t follows that 

f i s continuous in B(xQfR) (cf. t2t p.823)* Fix an arbitrary 

re(O f R), choose xcB(x Q f r) f heM with II h J « 1« Then for 

any t € (OfR - r) the point x • th belongs to B(xQtR)r and for 

any f € 3 fix) - continuous subgradients exist in virtue of 

continuity - we calculate 

(6) fl f II -* aup < £ ,h > £ sup { ~- [ f (x • th) - f (a 

Since by convexity 

f(x + th) - f(x}£f(x • th) • f(2x0 - x) - 2f(x0) 

-6 2 CM -f(x0)3 

ы 

216 -



holds, we obtain by lett ing t—>B - v 

sup { I f H I f * 3 f W , x € B t x 0 , r ) | ^ j j r £ [ M - *<*0>-l - c -

Theorem B immediately implies the Lipsehitz continuity of f 

in B(x0,r) with constant C (cf. £ 3 , p.423, [ 5 , p. 336/3373) # 

The same reasoning shows that the hypothesis of GSta-

aux differentiability of the convex functional f in [4 , Th«l, 

p. 78] can be dropped, and this result can be stated In the . 

following more general way* 

Proposition. Let X, Y be real normed linear spaces. 

Let F: BtxQlR)—> T be a mapping which i s GSteaux different 

tiable in B(xQ,r) (0-<r<R). .Furthermore le t a convex func­

tional f: B (x 0 ,R)—* R be given. Assume f i s bounded abo­

ve in the boundary of B(xQ,R) by some constant li. If 9 sa­

t i s f i e s 

BF'(x)l £ sup { Af II | f c d f ( x ) } 

for every x£B(x0,r), then 

sup {lF'(x)l J x£B«x o f r ) j £ £ ^ j - [M - f tx 0 ) ] « C 

holds. Moreover, F and f are Li pa chit zi an in B(xQ,r) with 

constant C. 

If moreover a lower bound a for the convex functional 

f in B(x0,R) i s known, then i6) yields at once 

sup { l f l | f c 6 f ( x ) , x € B ( x 0 , r ) } * R ^ T « c ' • 
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And Theorem B impliea Lipsch i tz continuity of f in B(xQ ,r) 

with t h i s constant (cf . [ l f p . 1 2 / 1 3 ] for a more complicated 

argument)• 
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