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FIXED POINT THEOREMS FOR PSEUDOCONTRACTIVE MAPPINGS AND A
COUNT EREXAMPLE FOR COMPACT MAPS

G. MOLLER and J. REINERMANN, Aachen

W: We give examples for open bounded starshaped
sets in a normable spaces of dimension at least 3 whose clo-
sures have not the fixed point property for compact self-map—
pings. Using a special convergence theorem we extend fixed
point theorems for pssudocontractive nepginga (including non-
expansive mappings) which are known for Hilbert spaces.

Key “ﬁg’: Fixed points, starshaped sets, compact map-
pings, pseudocontractive and ﬁomxpamivo mapp:{nga, duality
mappings.

AMS: Primary 4TH10 Ref. Z.: 7.978.53
Secondary 55C20, 4THO5

O. Introduction. It is well-known that the Brouwer fix-
ed point theorem need not be true for compact starshaped sub-
sets of a finite-dimensional space (see [12],[131,[14]),[15]).
However, the counterexamples given with respect to this prob-
lem are essentially boundary sets in the underlying space. In
this paper we shall give even an example of a compact starsha-
p'ed subset of three-dimensional space R3 which is the closu-
re of an open starshaped set but has not the fixed point pro-
perty for continuous maps. Moreover we shall present a theo-
rem on (strong) convergence for Banach spaces having a weakly
contimious duaslity mapping. Then we have both a generalization
of a corresponding result for Hilbert spaces which is due to
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M.G. Crandall and A. Pazy [3) and a couple of applications to
the fixed point theory of pseudocontractive and nonexpansive
mappings in Banach spaces possessing a weakly continuous dua-
1ity mapping (for Hilbert spaces some ol the results are known,
se« [12),[13),(143,[15),[16]1,[18]).

For a normed linear space (E, ||+ | ) E¥ denotes the strong du-
al space of (E, (l+|) and for a subset X of E let X, int(X),

0 X denote the closure of X, the interior of X and the bounda-
ry of X respectively. Xc E is said to be starshaped iff there
exists x, € X such that tx + (1 - t)xoe X for xeX and ¢t €

e [0,1]. For £f: X—> E we define Fix(f):={x| xe XA f(x) = x{.

l. A counterexample In this section we give an example
for an open bounded and starshaped subset of 11_3 whose closu-

re has not the fixed point property for continuous self-mapp-
ings. Moreover we discuss some consequences of this result to
R ™ (n23) and other spaces.

For the definition of the set in ]R3 described below we use
a construction and a hint of J.M. Lysko [10].

Theorem 1.1 There exist X ¢ R and £e C(X,X) such that
(1) X is open bounded and starshaped,
(11) PFix(£) =@,

Proof: (1) Let p: [-'5 ,1) — R * be defined as follows:

4 4
AYN t‘zwﬂl pll = t)(1 =2) + t(1 - i Y:=(n =2+ ¢)-ar
mzil

Define X, Y c R3 respectively by
X:= 4(r cos @,T sing,z) | refo,1), @€ R*, ze(-1,1)3u

{(lzlr cosg, |zir sin¢p ,2) | re(-;.—,l), 1¢lzl<2, plrlc
<g@<plr) +13

- 282 =



and
Y:= {(r cosg, r sing,z) | r € [0,1], e R, ze(-1,1230
{(iz)| cosqg, |zl sing,z) |11zl £ 2, ge R*3 U
{(1z\ r cosq,lzlr sing,z) | r el -g—_ 1), 1&elz) £ 2,
p(r)e @ 2 p(r) + 13.
By a straightforward but somewhat lengthy computation we ob-
tain: X is a bounded open and astarshaped (with respect to the
origin) subset of R3 such that X = Y. Now let H: R3— R
be defined as follows:

3

If (x,y,2) € R and (z |4 1 then H(x,y,2z):= (x,7,2);
if (x,y,2) € R3 and 1z 1 >1 then H(x,y,2):= (l_:T , I—% ’2) e

H clearly is a homeomorphism. Let K:= H[Y]. Thus
K =4{(r cosq,r sing,2)| re[0,11, ge R*, Iz1£13 v
{(cosg, sing,z) lpe R*, 14 (z1&23 v
f(r cos,r sing,z) | r efd 1), 1212142, plr) &
& @ £plr) + 13.
Clearly it is el"xough to prove the existence of a gec(K,K)
such that rix(g) = d.
Let R: K —> R3 be defined as follows:
If (x,¥,z)e K and z41 then R(x,y,z):= (x,y,1);
1f (x,¥,2z)€ K and x° + y2 =1 and z21 then R(x,y,2):=(x,y,2);
if (x,y,2)¢K and x = r cos¢p, y =r 8ing and r EC%’,I),ZZ 1

and p(r) & @ & p(r) + 1 then 1
(p~ (9)cos<9,p-1(g>)sing>,z +r-p ()
ifz+r-p )2l
Rix,y,2):=
((z =1 + rleosgg, (z -1 +r)sing,l)

ifz+1r - p-l(cg)<1-

For z€ [1,2) and r e[-;-_- ,1) such that p(r) & ¢ £ p(r) + 1
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we have z + ¢ - p-}(@) &2 42 and conversely z + r - p"l(g)s
41 implies
-42-4 réz -1 +rep )<l thus

R[K1cK := {(r coaq,r sin¢,1) | re (0,11, e R*3u
{(cos cp,8incp,z) | 2 € [1,2), o€ R*} U
{(p'l(cf)coay,p'l(go) sing,z} | z€[1,21,
veR*}cK.
Moreover we have R|K’ = Idy,, thus R[K7= Ki
Obviously R is continuous (it clearly suffices to verify this
for points (cos @o181n oeZ,) with Dy € R*? and z,€ [1,2]).
We have: R is a retraction from K onto K'c K. Therefore it is
enough to search for a map he C(K;K’) such that
Fix(h) = p (then g:= ho R C(K,K) and Fix(g) = #). Let h: K>
— R3 be defined as illustrated in the schedule on page 296 .

Remark 1,2. (1) Let ne N , let X ¢ R™ be open boun-
ded and starshaped with respect to be X. Suppose fe C(X,X’
such that Fix(f) = @, Let j: R® — R ™! be the natural em-
bedding. Then the "open cone over X"

Y:= -i(zl,...,z ) e R { Zpe1 € (0,1) A T—Lx,,_,;,,(zl'"-:zn)‘ X3

n+l

Rnﬂ' and g €

is an open bounded and starshaped subset of
€ C(Y,Y) defined by g((1 - t)(0,...,0,1) + tj(x):= J(£((1 ~
- t)b + tx)) for t € 0,11, xe X has no fixed points (compare
[{8]). Thus we obtain by Theorem l.l1:
3 3__x ded d (£) = 6.

Y XaR™ pec(R iy X OPen bounded starshaped A Fix(f) = 0
mz3

(11) Let (E,¥) be a separated locally convex topologi-

cal linear space of dimension at least 3. Then there exist an
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open starshaped set K and a compact map gec(i,'ﬁ) such that
Fix(g) = 0. Indeed, let F be a 3-dimensional linear subspa-

ce of E. As there are linear homeomorphisms between R3 and
F, there is an open bourded starshsped set (with respect to
the origin) X in F and fe C(X,X) with Fix(£) = @. Let P be
any continuous linear projection of E onto F (F is a comple-
mentary set). Set Ki= P [ XJand g:= £ o P|K. Then it is clear
that K is open and starshaped and g 1s a compact map such
that Fix(g) = @. If, in addition, (E,%¥) is normable, K may
be taken bounded.

2. Fixed point theorems for pseudoconiractive mappings.
A convergence theorem due to M.G. Crandall and A. Pazy (31
implies several fixed point theorems for continuous pseudo-
contractive and especislly for nonexpansive mappings in Hil~-
bert space (see (12],{131,[141,05],[161,[18]). In the present
note we establish a variant of that theorem which guarantees
that most of these resulis are valid for a more general class

of spaces.

Definition 2,1 (1) w : R*—> R™* is seaid to be a
gauge function : <> @ 1s continuous and striectly monotone,
@) =o0, %ifwy.(t) =2 0 .

(11) Let (E,N*ll) be a real normed space, w: R*—
~>R* ve a gauge function end J: E—>E*, J 1s called a
duality mapping with respect to :@,xYE J(x)(x) =
= fIxll.wClxll)a 0= «(lixl),

(111) (B, k*l), «,J) satisfies (%): <> (E,l-ll) is

a reflexive real normed space, «: R —> R * 1s g gauge
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function and J: E —»E* is a weakly sequentially continuous

duality mapping with respect to w 1).

Remark 2.2 (i) Let (E,ll+||) be s real normed space,
let w: R*— R"be a gauge function. Then the Hahn-Banach
theorem implies the existence of a duality mapping J: E— E*
with respect to « .

(11) Let (E,(-,¢)) be a real Hilbert space. Define J:
: E— E* by J(x)(y):= (y,x) and H+k: E— R by | x}):=
1= (x,x)l/e. Then ((E, i), Tdps ,2J) satisfies (% ).

(111) Let p, qe (1,00), ll,-or«% = 1. Then we identify
l;, £q' in the usual manner. Define J: lp — Zq by
J((xj)é‘ﬂ)m (Ixalp":l sign xd)éeN and u: R*¥— R by
@m(t):= tP"1. Then ((,¢p, i-1), m,J) satisries (k). (See
21,

Defipition 2,3 Let (E, I+l) be a normed space, $$XCE,
f: X—>E.
(i) £ is said to be nonexpansive :Mx,zex b £(x) - £(y)h &
2hlx-yl
(i1) £ is seid to be pseudocontractive : <=

x,:ex Icvekl x-yletQ+p)x-y)-r(e(x) = £(y))l

Remark 2.4 Let (E,l+f) be a real normed space, 8+ XCE,
f: X —E,
(1) If £ is nonexpansive then f is pseudocontractive.

(11) If there is a uniquely determined duality mapping

1) This imglies that E* 4ig strictly-convex (see [61) and con-
sequently J is unique.
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J: E—> E* with respect to some gauge function then we ha-
ve: £ pseudocontractive <= *;’GXJ(X - y)(elx) - £(y)) &

'
&J(x - y)(x - y) (see [71).

The announced convergence theorem is

Lempg 2,5 ([121) Let (E, 1) be a real normed space
admitting a weakly sequentially continuous duality mapping
J: E—» E* with respect to some gauge function @y let
(xg)e 2%, (rple (O,m)m such that
(1) lim(xp) =x, (weakly), (i) lim(rn) =0,

(111} m‘,XeNJ(xn - xp) (rx, - v x )% 0
Then lim(x,) = x, (strongly).

Proof: We have for ne N lim(J(x, - x.)) =
= J(x, = x,) (weakly), l}'{n(-rnxn + rpx) = -rox, (strongly).
This together with (iii) implies: J(xn - xo)(-rnxn) =
= Un(J(xy = xp) (-ppxp + rpxp) )20, hence J(x, - x_)(-x,) =
= J(xy = x) (xy = x)) + J(xy - x ) (=x )z I(x, - x,) (xy = x,)=
=llx, - x Il - w(lx, - x ). Because of
1im(J(x, = x,)(=x,)) = 0 we get 1lim( I x, = x, 1) = 0.

As an evident consequence of Lemma 2.5 we get

Lemma 2.6 Let ((E, I°l),w,J) satisfy (%), (x)eEVN |

(rp)e (O,&:o)N such that (x,) is bounded, lim(r; ) =0 and

M'XG“J(xn - x) (r

Thep there is a subsequence (ynl of (xn) and ye E guch that

p*n = Tp¥p) € 0.

lim(y,) = y (strongly).

Lemma 2.6 implies the following fixed point theorem for con-

tinuous pseudocontractive mappings:
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Lemmg 2.7 (See [161) Lat ((E, N*ll), m,J) satisfy (%),
let §4XcE be closed and £: X —» E be continuous and pseudo-
contractive, let (xn))e xN y (A e (0,1)N such that

(1) (xn) is bounded, (ii) 1lim(A ) =1,

(i111) m.‘zN x, = A f(x))

Thep £ has a fixed point.

N 1
Proof: We define (r, ) e (0,00)" by r := A, " l. As £

is pseudocontractive we get for n, m & N :

=J(xp = xp) (rpxp = roxp) = J(xy - xp) (xy = xp = £(xp) +
* f(xm)Izo (see Remark 2.4 (ii)). Lemma 2.6 guarantees ye& E
end a subsequence (yn) of (xn) such that lim(yn) = y (strong-
ly).
Then ye X and because of lim(y, - f(yn)) = 0 and continuity
of £ we get: £(y) = y.

The following theorems are applications of Lemma 2.7. For
Hilbert spaces and lipschitzian pseudocontractive mappings the
theorems 2.8 and 2.9 are proved in [16] and for merely conti-

nuous pseudocontractive mappings they are proved in [18].

Theorem 2,8 Let ((E, ll+)),«,J) satisfy (%), let XCE
be a closed neighborhood of the origin and £f: X —» E be com
tinuous and pseudocontractive such that £[ X] is bounded and

(Ls) “Vax a\{,‘ £(x) = Ax=>A £1

Then f has a fixed point.
Broof: Choose (A ) e (0,1)% with 1im(A) = 1. For n €
eN 2 nr is continuous and strictly pseudocontractive with
u:ﬁx AYR(a'nf)(x) =Ax=b A £1.

N

By a theorem of R. Schoneberg [181 there is (x )e X" such
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that x, = A f(x)) for n € N ., According to Lemma 2.7 we

are done.

Theorem 2,9 Let ((E,lll), «,J) satisfy (%), let XcE
be a closed and symmetric neighborhood of the origin and f£:
¢t X—> E be continuous and pseudocontractive such that £ [ X]
is bounded and xevax £l=x) = -£(x),

Then £ has a fixed point.

Proof: For x € 3X we have J(2x)(2£(x)) = J(x - (~-x))-
(£(x) -£(-x))£J(x = (=x))(x =(=x)) = J(2x)(2x). Thus £ sa-
tisfies condition (LS) of Theorem 2.8.

Lemma 2,]0 Let E be a topological linear space and Xc ¥
be starshaped with respect to the origin. Assume £: X—&
such that

v 3 _ -
(R} xedX A>0 t:('o,k] (1 +t)x - te(x) & X,

Ihen L J5y ZYr W =irz=asl

Proof: Let xe¢?X, A € R and £(x) = Ax, Suppose
A > 1. Choose A > O such that (1 + t)x - t£(x)& X for t e
€ (0, X1 and choose t e (0, X1 such that (A - 1)te (o,11.
Then we have (1 + t)x = t£(x) =(1 = (2= 1) t)xe X since X is
starshaped with respect to the origin, too. This contradicts
(R), thus A < 1,
Observing Lemma 2.10 and Theorem 2.8 we obtain

Theorem 2.11 Let ((E, l-1),«,J) satisfy (k). Suppose
XcE is closed and starshaped with respect to Oe int(X) and
f: X—» E is continuous and pseudocontractive such that £[X]

is bounded and
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(R) (1 +t)x - te(x) X

A4 3 v
x€dX A>0 te(0,02
Then £ has a fixed point.

Remark 2.12 Lemma 2.10 shows that H. Rothe s fixed
point theorem for compact maps in [17] is only a special ca—
se of the general Leray-Schauder fixed point theorem for com~

pact maps.

Theorem 2,13 Let (E, 1-1), w«,J) satisfy (). Suppose
XcE is a closed bounded and symmetric neighborhood of the

origin, f: X—» E is continuous and pseudocontractive such

that £{ X] is bounded and

(W 3 Yol s -0 ? -l2x - 2(x) + 2(x) 1 24

4L ~edlix -2l lx+ £(-x)M
and
(B) inf{llx-£(x)I | xedX3>0
Then £ has a fixed point.

Proof: Let € > O be chosen according to (A). Let M>0
such that I f(x)ll <M, Uxl<M for xeX, r:= inf §iix - £(x)A|
lxedX3, let (A )€ (0,1)N such that 1im(2 ) =1 ana
-2, 9% < €.1° for n € N . Then we have for xe 8X,

me N:
A0ae00 + apeor? - Lhax - A0 + A0 12
et v 202 - Thox - 20 + 201 %+
+ Q- 2a )01 -e) hx - 2@ hx+ 2(-x) 1+
+(l-ﬂ.n)-4M2£le-f(x)ib‘x-rf(-x)ﬂ-e-rz+

+ Q=2 e (hx-a G+ (1=K
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(hx + A e+ Q=AM —e.r? + (1 -a,). a8
<l x = Apex)hell x + A £(-x) ]l , hence

x = A f(x)4¢ @(-x = A f(-x)) for ne N , xe 3 X,
~ € (0,1].
By a theorem of R. Schoneberg [18] we obtain a sequence (xn)

such that x, = hnf(xn). Hence f has a fixed point by Lemma
2.7

Remark 2.14 (i) In the case of a Hilbert space
(E,{+,+)) the condition (A) of Theorem 2.13 is equivalent to

x = £(x) =x~f (=x)
sgo xzax([]x - £{x ); Y l=x - £ ’-‘x ﬂ)él -€

(1i) For nonexpansive mappings we get the following

Theorem: Let (E, I-ll) be a uniformly convex space. Sup-
pose Xc E is a closed bounded convex symmetric neighborhood
of the origin and let £: X —>E be nonexpansive such that (A)
of Theorem 2.13 is fulfilled.,

Then £ has a fixed point.

The proof is based upon the fact that Idx - £ is demi-
closed.

Theorepm 2,15 (see [181) Let ((E,N-l), «,J) satisfy
(%), let XcE be closed and bounded with int(X)s @. Suppose
£f: X—> E is continuous and pseudocontractive such that £[ X1]
is bounded and 22X “Yax Iz -2(z)l<lx - £(x)N ("mini~

mum principle”)
Then £ has a fixed point.
Proof: Theorem 1 of [9] implies inf §lix - £(x)l|xeX}= 0.

Without loss of generality we may assume that

- 291 -



a:= inf{lx - £(x){ | x€ 3X3>0 and that there exists ze X
such that |l z - £(2) || < a. Moreover we may assume | £(0) Il < a.
Choose (r )€ (O,m)“ such that lim(r,) = O and rp A xll +

+ £(0)l <a for n € N and xeX. Define T : X—>E by

= (1 +rp)Idy - £, let n e N . Then we have for x, ye X:
@(lx =yD)IT (x) - T (NI z J(x - (T (x) - T (¥))=
zdx - ) (epx = ry) =ry @(lx-yl)Ix-yl, hence

@ T (x) =T (y)HZzr,lx-yll, and for xe X:

a0l = 1@l <l x =2l =r, Ix £l T,(x)l o Theo-
rem 1 of [9] implies: O T T X1, and because of (0): OeT [X1.
That means: There is (x))e XN guch that x, =

7] :_I,'m £(x, ) for

ne N . Lemma 2.7 completes the proof.

Remark 2.16 From Theorem 1 of [ 9] we learn that Theorem
2.15 remains true if the assumption "((E,f<ll ), «,J) satisfies
(% )" is replaced by "(E, ll-l) is a Banach space and X has the
fixed point property with respect to nonexpansive self-mapp-
ings".

Lemmg 2,17 Let (E, h+ll) be a normed space. Suppose Xc B
is closed and starshaped with respect to the origin,A€(0,1)
and £: X—> E such that

Y, limFal(1 - t)x + t£(x),X) =0

*X€dX +£=0
t>0 p
A4 _ - + 4. =
Then oK tl_i,nétd((l t)x +t-A£(x),X) =0
t >

Theorem 2,18 Let ((E,ll*f),«,J) satisfy (% ). Suppose
XcE is closed, bounded and starshaped and £f: X— ¥ is conti-~
nuous and pseudocontractive such tﬁat

A
«JoX Jim 2a((1 - t)x + t£(x),X) = ©

t>0
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Ihen £ has a fixed point.

Proof: Define J: E —»E* by J(0):= 0, J(x):=

R |
: m J(x) for xe EN10} . J 1s the (uniquely determin-

ed) duality mapping with respect to Idg+ o Without loss of
generality we assume X to be starshaped with reapect to the
origin. Choose (A .)e (0,1)™ such that 1im(A ) = 1. Then
we have for n ¢ N :

(1} A £ 1s continuous

(11) Fx = P (A ex) - A,2(3)) ¢ A Nx -y ?

, 1 =
(111) Ya lim +d((1 - t)x + ¢t - A £(x),X) =0 (Lenna

2.17)
A theorem of R.H. Martin [11] and K. Deimling [4] implies the
existence of (x, )y € xN gueh that x, = A f(x) for ne N,

and Lemms 2.7 completes the proof,

Remark 2.19 For lipschitzian pseudocontractive mappings
in Hilbert spaces Theorem 2.18 was proved by D. Gohde [5]. If
X is assumed to be convex it was shown in [16] that the assum—

ption "f be lipschitzian” can be dropped.

Theorem 2.20 Let ((E,I-W),a«,J) satisfy (x ). Suppose
@+ XCcE is closed and bounded and £: X — E is nonexpansive
such that co £ [3X]c X,

Then £ has a fixed point.

Proof: Without loss of generality Oe £ ({3 X1 . Let
(Ap)e (0,1)“ with 1im(A,) =1, Forne N , xe 3X we ha-
ve: AL is a Banach-contraction and (A f)(x)e co £{8 XIc X, .
thus (A f£) (A X1cX. ‘
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According to a theorem due to N.A. Assad [1] there is (x, )¢

e xM such that x, = .&nf(xn) for ne€ N , and by Lemma 2.7

n
we obtain the conclusion.

Lemmg 2,21 Let (E,ll-ll) be a normed space, J: E — E*
be a duslity mapping with respect to some gauge function
“ R*—> R . Suppose x, ze¢ E, M>0, x| =3M, llz[l<M.
Then (1) O< m(2m) = NJ(x - 2N = w(l x|+ W

(11) J(x = 2)(x) =z w(2M) - M.

Proof: (1) No(x=-2)ll= wllix=-z1) = @(hxlh=1zD )z
za(3M =M, (Jlx-2)lle «Cllxll+ hzl) & wChxll+ M

(11) J(x = 2)(x) = J(x - z(x = z) + J(x - z)(z)

Zhdlx = 2) | (Ix -zl-0z0)2 w@W: M,
Lepgmg 2.22 Let (E,l*ll) be a normed space, M, r>0,

xeE,lxl\23M, d+ScE and suppose Iz <M for z€S.
Then izn;‘fg 11 +r)x -2 l\>iznét.’sl|x -zl

Proof: Let J: E—» E* be a duality mapping with res-
pect to IdR" . Then we have for z€ S: | J(x - z)I (1 +
+r)x ~zNZzJ(x - 2)(x -2) +J(x - z)rx) = NJ(x - 2z} Ix -

~zl+rJdlx-2)X)z20dx-2)0 Ix-zf+r.-2.-.M-M, and

from
2aM?
f(y + rz)x -zlzlx -2z|| * Dol 2 Il x=-2zll+
"—Q;:-"ﬁ—ﬁ- and ﬁ-;z—;if—M > O the conclusion follows.

Lommg 2,23 Let (E,f+ll) be a normed space, P#XcE and
f: X—> E be nonexpansive. Suppose xoex such that
(fn(xo))mgv 1s bounded. Finally let (x ), . n¢ x¥ such that
4
£lxy) = (1 + g)x, fornes N

Then (xn)mew is bounded.
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Proof: Define S:= {fn(xo) | ne Zt3%. Obviously S#&.
Choose M>0 such that [z l<M for zeS. We claim |/ x Il <3M
for n €« N . Otherwise we would have || x, | 2 3M for a suit-

able n € N , hence by Lemma 2.20 inf §f(x ) - zll =
2€S n

1 - -
= %2‘% I+ Z)x, - 2 Il>%r€1fs fx, -zl for this n. Choose
yes with llx, - yll< %Efsuf(xn) -~ z ll. Observing £(y)e S we
get Ne£lx) - 2(y) = inf I£(x) =z >0x -yl and this

is a contradiction to the nonexpansiveness of f.

Theorem 2,24 Let ((E,I+ll), w,J) satisfy (% ). Suppose
#+ XcE is closed and starshaped and £f: X—» E is nonexpan-
sive such that:
(1) £{édXlcX
(11) there is x,e€ X such that (fn(xo)),,,'E z+ 1s bounded.
Then £ has a fixed point.

Proof: Without loss of generslity let X be starshaped

4

p m+1 ) £
is a Banach-contraction with (1 - i ) L3dX1cX. By a

with respect to the origin. Then for n e N (1 -

theorem of N.A, Assad (1] there is (xn)e x™ such that X, =
= (1 - ”-%T)f(xn) for ne N . The boundedness of (xn) fol-

lows from Lemma 2.23; Lemma 2.7 completes the proof.

Remark 2,25 (i) Theorem 2.24 was originally proved for
Hilbert spaces by J. Reinermann and R. Schoneberg [16].

(11) In the case of a Hilbert space (E,(-,*)) and a con-
vex X Theorem 2.24 remains valid if condition (i) is cancel=-

led.
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xel9,2] ' —2-2L (4= 2 oy 14 %) ey 44 %)
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