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ON THE STRUCTURE OF FIXED POINT SETS OF PSEUDO-CONTRACTIVE
MAPPINGS 1II.

Rainald SCHONEBERG, Aachen

Abgtract: Let (E,|l ) be a (real) normed linear spa-
ce, X a subset of E and let f map X into E. The present pa—
per investigates the nature of the set of solutions of the
equation f(x) = x if f is nonexpansive or (more generally)
pseudo-contractive.

K words: Nonexpansive, pseudo-contractive, metrical-
ly convex, pathwise connecteé, weakly inwerd.

AMS: 47H10 Ref. Z.: T7.978.53

1 Preliminsries gnd notetions. In § 1 we introduce de-~
finitions of certain concepts to be used in this paper, des-

cribe a method which will be helpful to reduce the fixed

point problem for pseudo=-contractive mappings to the nonex—
pansive case and establish several properties of this reduc-
tion. In § 2 we prove a general result on the structure of
the complement of the fixed point set of a pseudo-contracti-
ve mapping and state some interesting consequences. § 3 is
motivated by the observation that the method of proof used

in [15] yields an improved version of the main result of [15].
We state and prove this generalization and use it to deduce

a number of new results on the structure of fixed point sets
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of nonexpansive and pseudo-contractive mappings in striect-
ly convex and arbitrary Banach-spaces.

All normed linear spaces occurring in this paper are as-
sumed to be real normed linear spaces.
Let (E, k ) be a normed linear space. For XcE and £: X—> &
we let X denote the closure of X and Fix(f) is defined to be
the fixed point set of f. If Hc R and Xc H then the symbol
anz stands for the boundary of X in the subspace H. In case
H =E we write 9 X instead of 3gX.
A subset X of E is said to be petrically convex if for each
pair of distinct points X)Xy of X there 1s a point x of X,
distinct from x; and X5 such that

Nxy = x 0 =llxy = xll +lix; - xll.

Every closed and metrically convex subset of a Banach-space
is pathwise connected (see [11). The properties "convex" and
"metrically convex™ coincide for closed subsets of strietly
convex normed linear spaces.

A subset X of E is said to be gtarshaped if there is x e X
such that (1 - t)x, + txeX whenever t € [0,1] and xeX.

It is well-known and easily verified that the path components
of the complement of a starshaped set are unbounded.
According to [ 91 we say that a set XCE has pormgl structure
if for every convex and bounded subset K of X which contains
more than one point. there is a point x in K for which

sup(4ll x = yll | yeK¥)<sup(dlu=-v | u vek}).,

If X is compact or (E, ll | ) is uniformly convex then X has

normal structure.
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If Xc E and £: X—>E then £ is said to be waagkly ipward iff

lim ht a((1 - h)x + he(x),X) =0
ot

for each x¢ X, where d(z,X):= inf({l}lz - y i | ye X} ). Note
that £ is weakly inward if £ (3 X1c X and X is convex, f is

said to be popexpanslve if for all x,ye X
1£(x) - (PP «llx-31,
while £ is said to be_pgeudo-gontractive if for all x,ye X
and r20
Ilx-ylelQ+r)x=y) ~-riex) -2(y))}.

The pseudo-contractive mappings are easily seen to be
more general than the nonexpansive mappings. They derive their
importance in nonlinear functional analysis via their connec~
tion with the accretive transformations: A mapping £: X—> E
is pseudo-contractive if and only if the mapping Id - f is

accretive, i.e., for every x,y€ X there is je J(x - y) such
that

(£(x) - £2(y), N & Vx - 312,
where J: E—> 2!"‘ denotes the pormglized duslity wappipg
which is defined by

J(x): = $5eB*) (x,9) = Uxh? and UJl= U xl3
(see 181).

Our main tool in studying the fixed point problem for
pseudo-contractive mappings is

Eroposition 1. Let (E,Il ¥) be a Banach-space, Xc B
and let £: X—>E be continuous gnd pseudo-contiactive. Let
furthermore Ap: X—> E be defined by Ap:= 2Id - £, Then:
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(1) Ap is ope-to-ome and A, is nonexpansive.

(2) Fix(£) = Fix(agh)

(3) If £ is weakly inwerd apd X 1s closed and convex then
Xeh LX),
(4) If X 1s cloged thep Aol X1 is closed.

(5) If£ X ia open then Ap( X] i open.
Proof: (1),(4): For x,y € X we have by definition
] Af(x) - Af(y) I=zltx=-yl

which establishes (1) and (4)., (2): Obvious. (3): Let z be in
X and define g: X—> E by g(x):= —42-(f(x) + z). Then g is weak-
ly inward amd continuous. Let x,ye X. By the previous remark
there is je J(x - y) such that (£(x) - £(y),j)« i x - ¥yl 2,
This implies (g(x) - g(y),J) « % hx -y |2 . Hence by [4, Co-
rollary 2] there is xe X with g(x) = x, i.e., z = Ap(x). (5):
Let x,ye X and choose je& J(x - y) with (£(x) - £(y),3) = | x -
-yl 2, Then
(hglx) = Ag(y),3) = 2(x - 3,) - (£(x) - £(3),P2hx - ¥l 2
Therefore by [4, Theorem 3] Af[ X1] is an open subset of E.
Q.E.D.

2 Complements of fixed point sets. The main result of °
this section is

Theorem 1. Let (E, I %) be a normed lipear space, XcE
and let f£: X—> E be pgeudo-contractive. Then every xe X N\

\ Fix(£) lies in an unbounded path component of E\ Fix(f£).
Proof. Let xe& X\ Fix(f) and define HcE by

Hi={x + p(x - £(x)) | r20%.
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Then H is a pathwise connected unbounded subset of E with
x € Ho Therefore it suffices to show that Hn Fix(f) = @. Ot-
herwise there is r>0 such that y:= x * r(x - £(x))e Fix(f).
Since £ is pseudo-contractive this yields

ix-y1l£1(Q +2)x-y -r(elx) -y)l =0.
Hence x = y, i.e., xe Fix(f), a contradiction. Q.E.D.

It is well-known that in finite-dimensional normed li-
near spaces the boundary of a nonempty open and bounded set
is not a continuous retract of the closure of this set (see
£61). This isn’t true for infinite-dimensional normed linear
spaces. Indeed, a normed linear space is infinite~dimensional
if and only if there is a continuous retraction of the unit
ball onto the unit sphere (see [ 5]1). However, such a retrac—
tion cannot be pseudo-contractive. This is a consequence of
the following result, which improves a corresponding one due
to Floret [ 71.

Corollary l.k. I£ (E,0 I) ia a pormed lipear space snd

X is a nopempty open and bounded subget of E then there is no
pseudo-coptractive retraction of X onto JX.

Proof. If R: X—>E is pseudo-contractive such that
9 Xc Fix(R) then R = Id by Theorem 1., Hence R cannot be &
retraction onto 3 X. Q.E.D.

Another useful consequence of Theorem 1 is

Corollary 1.2. Let (E,N W) be a normed linear space
and X g subsget of E gych that the path components of ENX
are unbounded. Let furthermore f: X—> E be pgeudo-contract-
ive. Then every path component of ENFix(f£) ias unbounded.
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Proof. Let U be a path component of EN\ Fix(f) and sup-
pose, contrary to our assertion, that U is bounded. Then by
Theorem 1 UnX = @, i.e., U is a bounded path component of
EN\X, a contradiction. Q.E.D.

Corollary 1.3. Let (E, N 0) be a pormed limear space,
X a_starshaped subset of E gpd let f: X —>E mm
ractive. Then every path component of EN Fix(f£) ia unbounded.

Remark 1. In the case of a convex X and a compact and
nonexpansive selfmapping of X, Corollary 1.3 was proved by
Stoyan in L161.

3 Fixed point sets. The results of this section are
based on the following improved version of Theorem 1 in [151.

Although the method of proof is the same as in [15] we give

the proof for the sake of completeness.

Theorem 2. Let (E, N ) be a norped linear space, HcE
be closed and convex, Xc H be _closed and let f£: X—> H he pon=
expansive. Then Fix(f) ia closed and metrically convex if the
following conditions are satlsfied:

(1) IL£ K ia g nopempty, bounded, _closed and convex subset
of X auch that K lies in some aphere and £ (Klc K. tjhep £
has a fixed point in K.

(2} card(Fix(f) A O X} 41

Progof. Since X is closed and £ is continuous the f£ixed
point set of £ is closed. Let now x;,X,€ Fix(f) with x;% Xpe
Because of (2) we may assume the existence of r>0 sueh that
yeHend lly - x; V £r imply ye X. Choose t ¢ (0,1) with
tlx); - x,M&r and define KcE by
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Ki={yeB|Ix -y letlx -x,1 and Ix, -y N &
é(l-t)lxl-le}

Then K is a nonempty L[(1 - t)x; + txye K1, boundodr,,.olo?ed

and convex subset of X such that K lies in the sphere of ra—
dius tll x; - x, I about X;. Using the nonexpansiveness of f-
it is easily verified that £L K1 c K. Hence by (1) there is

x€ K with £(x) = x. Now

I xy --xl->|x2 -xlletlx -l + Q1 -'t)ﬂxl -le

= " xl - 12 “
and therefore

Ix; -xli+ ﬂxz -xl= Ix - le .
Since x+ x) and ::4-=x2 we are done. Q.E.D.

It is well-known that a nonempty convex subset of &
strictly convex normed linear space which lies in some sphere
consists éxactly of one point. Hence (1) of Theorem 2 is al-
ways satisfied if (E, 1 | ) is assumed to be strictly convex.
This yields the following extension of the classical result '
of Schaefer [141:

Corollary 2,1. Lat (E,1 II) be g strictly convex pormed
linear space, HCE Dbe closed apd comvex, XcH be cloged and
let £: X—> H be nonexpansive such that card(Fix(f£) m aHx)e
1. Then Fix(f) ia closed and copvex,

The most famous fixed point theorem for nonlinear non-
expansive mappings in the noncompact setting is that obtain-
ed independently by Browder, Gohde and Kirk who. proved that
a nonexpansive selfmapping of a nonempty weakly compact and

convex subset of a Banach-space has a fixed point whenever
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this set has normal structure (see [9]). This yields, obser-

ving Theorem 2

Corollary 2,2. let (E, Nl ) be a Banach-space, HCE be
closed and convex and Xc H be cloged guch that every closed,
bounded gnd convex subget of X jg wegkly compact and has nor-
pal structure. If f£f: X—> H ig nonexpgnsive such that
card(Fix(f) n aHx).él then Fix(f) is closed and pathwise
gonnected,

In the remaining part of this section we treat the "stru-
cture-problem" for fixed point sets of pseudo-contractive map-

pings.

Corollary 2.3. Let (E, I ) be a strictly convex Ba-
pach-gpacey Xc E be cloged gnd convex and let f: X—> E be
continuous, pseudo-contractive and weakly inward. Then Fix(f)

1a cloged apd convex.
Proof. Define Ap: X—>E by Ap(x):= 2x - £(x). Because

of Proposition 1, (1) and (3) we may define g: X—> X by
glx):= A;l(x). Then Fix(f) = Fix(g) and g is nonexpansive by
Proposition 1, (1) and (2). Now Corollary 2.1 implies that

Fix(g) is closed and convex, which yields the assertion.

Q.E.D.
r ry 2,4. Let (E, I I) be a Banach-space and let
X be a nonempty, weakly compact and convex subset of E whicgh
hag normal structure. Let furthermore f: X—>E be continu=
ous, do-gontr d rd. Then Fix(f) is

nonempty, a nonexpansive retract of X *)

%) i.e. there is a nonexpansive mapping r: X—> Fix(f) with
r(x) = x if xe Fix(f). It should be noted that a nonexpan-
sive retract of a convex set is metrically convex(seel3l).

apd, in particu-
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lar, pathwige coppected.
Eroof. Let Ap and g be defined as in the proof of Coro~

llary 2.3. Then Fix(g) is nonempty by the Browder/Gohde/Kirk
theorem and a nonexpansive retract of X by [ 3, Theorem 21].

Using Fix(f) = Fix(g) we are done. Q.E.D.

Remark 2. The existence part of Corollary 2.4 was proved
for Hilbert spaces in [12] and for arbitrary Banach-spaces
in [11],

Let (E, I 1) be a normed linear space, XCE and f: X—>
—> E. Recall (see [10]) that £ is said to be generglized con-
densing if whenever Yc X, £{Ylc Y and Y\ @(£LY]) is relati-
vely compact, then Y is relatively compact, where co(f[ ¥J)

is the convex closure of £L[Y] .

Copollary 2.5. Let (E,W 1) be g Bapach-spage, XCE be
nonempty, clogsed, bounded gnd convex and let f£: X—> X he con~
tinuous, pgeudo-contrgctive apd generalized condensing. Then

Fix(f) 1a nonempty, compgct and pathwise connected.
Proof. The Lifschitz-Sadovski fixed point theorem [10]

implies that Fix(f) is nonempty and compact. Furthermore it
is well-known (see [131) that there is a compact and convex
subgset Y of X with Fix(f)c ¥ and £ [ Y] c Y. Hence Corollary
2.4 applied to (flr,Y) shows that Fix(f) is pathwise comnec-
ted. Q.E.D.

Corollary 2.6. Let (B, N ) be a Banach-space such
3hat every nonempty, closed, bounded and convex subset of

with respect to nopexpansive selfmappings. Let ermo=
morg XcE be open and £: X—>E be continuous and pgeudo—
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coptractive such that card(Fix(f)n 0 X)£ 1. Then Fix(f) ia
closed, metrically copvex and, in particular, pathwise con=
Rected.

Proof. Define Ap: X—» E by Ag(x):= 2x - £(x), Yc B by
Ti= Al X] and g: Y—> B by glx):= A;l(x). Proposition 1
implies that Y is closed, g is nonexpansive, al‘cAr [oXx]
and that Fix(g) = Fix(f). Hence card(Fix(g)n dY)<'1, which
implies - by Theorem 2 - that Fix(g) = Fix(f) is metrically

convexe. Q.E.D.

Corollary 2.7. Let (E, % U) be g strictly convex Bangch-
space, Xc E gpen and let £: X—> E be continuous apd pseudo-
contractive such that card(Fix(£) N 3X)£ 1. Thep Fix(f) ia
glosed and convex.

Remark 3. The results of this section seem to he new.
For the detailed discussion of relevant contributions of ot-
her authors and some applications of results similar to tho~

ge of this section we refer to [ 151.

The present paper extends several results of an earlier
one of the author, which appeared under the same title in
Comment. Math. Univ. Carolinae 17,4(1976), 771-777. It should
be noted, however, that the proofs in that paper don’t use
such deep results from the theory of differential equations
in Banach spaces as [4, Corollary 2] and [ 4, Theorem 3] .
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