Commentationes Mathematicae Universitatis Caroline

Jan Menu; Jan Pavelka
 On the pose of tensor products on the unit interval

Commentationes Mathematicae Universitatis Carolinae, Vol. 18 (1977), No. 2, 329--341
Persistent URL: http://dml.cz/dmlcz/105777

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

18,2 (1977)

ON THE POSET OF TENSOR PRODUCTS ON THE UNIT INPERVAL

Jan MeNU, Antwerpen and Jan PAVELKA, Praha

```
Abstract: The paper is concerned with the way in which the poset of all tensor poducts on the unit interval I of reals is embedded in the complete lattice of all binary operations on \(I\). The main result says that any lower-semicontinuous commutative operation on \(I\) that has 0 for zero and 1 for unit can be obtained as the join in \(I^{I \times I}\) of a countable family of tensor products on \(I\) all of whose members are isomorphic to
\[
x \text { 田 } y=0 \vee(x+y-1)
\]
Key words: Tensor product, \(\in \ell\)-monoid, residuated lattice, lower-semicontinuity.
AMS: 06A50, 22A15 Ref. Ž.: 2.721.65, 2.721.67
```

Introduction. In [4] we considered various ways in which I can be endowed with the structure of a symmetric monoidal closed category. Recall that any tensor product on I (that is, an isotone binary operation $\square: I \times I \rightarrow I$ with the properties
(0.1) ($I, \square, 1$) is a commutative monoid;
$(0,2)$ the distributive law

$$
(V X) \square a=V\{x \square a \mid x \in X\} \text {, }
$$

where $V X$ denotes the supremum of X in I, holds for any $X \subseteq I$ and any $a \in I)$
has a right adjoint $h: I \times I \longrightarrow I$, linked with a by the formula
(0.3) for all $x, y, z \in I$, $x a y \leqslant z$ iff $x \leqslant h(y, z)$. The right adjoint h of a is uniquely determined by the Pormula
(0.4) $h(x, y)=\max \{t \in I \mid t \square x \leq y\} ; x, y \in I$.

Also recall that a binary operation on I satisfies (0.2) iff it is isotone, lower-semicontinuous, and has 0 for zero.

If we generalize the above notion to an arbitrary complete lattice L with the least element 0 and the greatest Clament 1; then a binary operation a on L is a tensor product iff (L, \square) is an integral $c \ell$-monoid in the sense of Birkhoff [1]. According to Dilworth and Ward [2], a tensor product on L together with its right adjoint h endow L with the structure of a residuated lattice; \square is then called multiplication and h is called residuation in L.

In this paper we shall adhere to the terminology of [4] and use the term "tensor product". Given a complete lattice I we shall denote by $\mathscr{T}(L)$ the set of all tensor products on L partially ordered by the relation
(0.5) $\square \leqslant \square^{\prime}$ iff $x \square y \leqslant x \sigma^{\prime} y$ holds for all $x, y \in L$. Thus, $\mathcal{T}(\mathrm{L})$ is a subposet of the complete lattice $\sigma^{\prime}(L)=$ $=L^{\text {LxI }}$ of all binary operations on $L_{\text {. }}$.

1. Some properties of the posets $\mathcal{T}(L)$

1.1. Observation. Given a complete lattice L and D, $\square^{\prime} \in \boldsymbol{J}(L)$ let h and h^{\prime} be the right adjoints of \square and \square^{\prime}, respectively. Then $\square \leqslant \square^{\prime}$ iff $h(x, y) \geq h^{\prime}(x, y)$ holds for any $x, y \in L$.

Proof. It is easy to show that the adjoint ness condition (0.3) for a couple (a, h) on L is equivalent to the folt Iowing couple of inequalities in (L, \square, h)

$$
\left(A^{\prime}\right) \quad x \leqslant h(y, x \square y) \quad h(x, y) \square x \leqslant y \quad\left(A^{\prime \prime}\right)
$$

If $\square \leqslant \square^{\prime}$ then by ($A^{\prime \prime}$) for $\left(\square^{\prime}, h^{\prime}\right)$ we have $h^{\prime}(x, y) \square x \leqslant$ $\leqslant h^{\prime}(x, y) \square^{\prime} x \leqslant y$ hence $h^{\prime}(x, y) \leqslant h(x, y)$ for all $x, y \in L$. Similarly one proves the converse implication.
1.2. Observation. If L is completely distributive then the meet \wedge in L is the greatest element of $\mathcal{T}(L)$.

Proof. By definition, $(x, y) \longmapsto x \wedge y$ is a tensor product on L iff L is completely distributive. If $\square \in \mathcal{T}^{\prime}(L)$ we obtain by the isotony of \square the inequality

$$
x \square y \leq(x \square 1) \wedge(1 \square y)=x \wedge y
$$

for all $x, y \in L$. Thus \wedge is the unit of $\mathcal{T}(L)$ provided L is completely distributive.
1.3. Remark. It is easily shown (see [2]) that if L is, moreover, boolean, $\mathscr{J}(L)=\{\wedge\}$.
1.4. Proposition. Let L be a complete chain. Then $\mathcal{T}^{\prime}(\mathrm{L})$ has the least element iff 1 is isolated in L.

Proof. Given a complete chain L consider the operation

$$
x \Delta y= \begin{cases}0 & \text { if } x \vee y<1 \tag{1.1}\\ x \wedge y & \text { otherwise }\end{cases}
$$

Clearly, $\Delta \in \mathcal{J}(L)$ iff $1>V\{x \in L \mid x \neq 1\}$ in L. Since $\Delta \leqslant$ $\leq \square$ holds for any $\square \in \mathcal{T}^{\prime}(L)$ it suffices to show that for any $A \subseteq L \backslash\{1\}$ such that $V A=1$ there exists a system $\left\{\square_{a} ; a \in \mathbb{A}\right\}$ of tensor products on L such that $\Delta=$ $=\Lambda\left\{\square_{a} \mid a \in A\right\}$ in the complete lattice $\sigma(L)$. To this end, put

$$
x a_{a} y= \begin{cases}0 & \text { if } x \vee y \leqslant a \\ x \wedge y & \text { otherwise }\end{cases}
$$

for any $a \in A$ and $x, y \in L$ ．Then it is easily verified that the family $\left\{\square_{a} ; a \in A\right\}$ has the desired properties．

1．5．Proposition．If L is a complete lattice and $\varphi<$ 1s a nonempty chain in $\mathcal{T}(L)$ then the join of er in $\sigma(L)$ is again a tensor product on L ．

Proof．Assume that $\varnothing \neq \varphi$ is a chain of tensor pro－ ducts on L ．We have to verify that （1．3） $x \Delta y=V\{x 口 y \mid a \in \operatorname{cr}\}$
is a tensor product on L．Obviously，Δ is commutative，dis－ tributive with respect to all joins in L ，and it has 0 for zero and 1 for unit．As to the associativity，take any x, y ， $z \in L$ ．We have（ $x \Delta y$ ）$\Delta z=$
$=V\left\{(V\{x a y \mid a \in \operatorname{Cr}\}) a^{\prime} c z \mid a^{\prime} \in \operatorname{CK}\right\}=$
$=V\left\{V\left\{(x a y) a^{\prime} z \mid a \in \operatorname{er}\right\} \mid ロ^{\prime} \in \operatorname{Cr}\right\}=$
$=V\left\{\left(x a^{\prime \prime} y\right) \square^{\prime \prime} z \mid \square^{\prime \prime}=\max \left(\square, a^{\prime}\right) ; ~ 口, ~ a^{\prime} \in \operatorname{Cl}\right\}=$
$=\vee\left\{x \square^{\prime \prime}\left(y \square^{\prime \prime} z\right) \mid ロ^{\prime \prime}=\max \left(\square, a^{\prime}\right) ; ~ ロ, \square^{\prime} \in \operatorname{er}\right\}=$
$=V\left\{V\left\{x a\left(y a^{\prime} z\right) \mid a^{\prime} \in \operatorname{er}\right\} \mid 口 \in \operatorname{er}\right\}=$
$=V\left\{x a V\left\{y a^{\prime} z \mid a^{\prime} \in\right.\right.$ er $\left.\} \mid a \in \operatorname{Cr}\right\}=x \Delta(y \Delta z)$ ．

2．A result concerning $\mathcal{T}(I)$ ．Let us now consider the case when $L=I$ is the unit interval of real numbers．Let er $\approx \mathcal{T}(I), \quad e r \neq \varnothing$ ，and let $\Delta=V e r$ in $\sigma(I)$ ．If we omit the requirement that er be a chain，Δ is again iso－ tone，commutative，lower－semicontinuous，and has 0 for zero and 1 for unit．On the other hand，it need not by far be asso－ ciative；in fact，we shail show that any binary operation Δ
on I that fulfils the above mentioned conditions can be ob－ tained as a join in $\sigma(I)$ of a countable family $\left\{a_{i} ; i \in\right.$ $\boldsymbol{\epsilon} \boldsymbol{\omega}\}$ of tensor products on I ．Moreover，we can ensure that each a_{i} is continuous，the semigroup（ I, \square_{i} ）has no idempotents other than 0 and 1 and all elements of $I \backslash\{1\}$ are nilpotent in（ I, \square_{i} ）；in other words（［5］），that each semigroup（ I, a_{i} ）is isomorphic to（ I ，田）where （2．1）x 田 $y=O V(x+y-1)$ for all $x, y \in I$ ．

2．1．Theorem．Let Δ be an isotone，commutative and lower－semicontinuous binary operation on I such that $x \Delta O=$ $=0$ and $x \Delta 1=x$ holds for any $x \in I$ ．Then there exists a countable set et or tensor products on I isomorphic to the product $⿴ 囗 十$ given by（2．1）so that
（2．2）$x \Delta y=V\{x a y \mid \square \in \mathscr{E}\}$
holds for all $x, y \in I$ ．
Proof．We shall need the following lemma which follows： immediately from the lower semicontinuity of Δ ．

2．1．1．Lemma．With Δ gs in the gssumptions of 2.1 let D be a dense subset of I and let $x, y_{1}, \ldots, y_{n}, z_{1}, \ldots, z_{n}$ ， weI so that $x \Delta x>w$ and $x \Delta y_{i}>z_{i}$ for each $i=1, \ldots, n$ ． Then for every $u<x$ there exists $d \in D$ with the properties $\mathrm{u}<\mathrm{d}<\mathrm{x}, \mathrm{d} \Delta \mathrm{d}>\mathrm{m}$ ，and $\mathrm{d} \Delta \mathrm{y}_{\mathrm{i}}>\mathrm{z}_{\mathrm{i}}$ ．

2．1．2．Assume given Δ that satisfies the assumptions of 2.1 and some a, b, ε with
（2．3） $0<b \leq a<1,0<e<a \Delta b$ ．
We are going to prove that there exists an order－isomorphism $f: I \approx I$ such that the tensor product 田 $^{\dot{P}}$ on I defined by
the formula
（2．4）$\quad x$ ® $^{f_{y}}=f^{-1}$（fx $⿴ 囗 十$ fy），all $x, y \in I$
satisfies the inequalities

Choose a countable dense subset $D \subseteq I$ so that $0,1 \notin D$ ．
Now assume we have constructed a family
（2．6）$\quad\left\{d_{n, k} ; n \geq 5,3 \leq k \leq 2^{n}\right\}$
with the properties
（a）$D=\left\{d_{n, k} \mid n \geq 5,3 \leq k<2^{n}\right\} ;$
（b） $1>d_{n, 3}>d_{n, 4}>\ldots>d_{n, 2^{n}-1}>d_{n, 2^{n}=0 \text { for any }}$ $\mathrm{n} \geq 5 ;$
（c）$d_{n, k}=d_{n+1,2 k}$ for any $n \geq 5,3 \leq k \leq 2^{n}$ ；
（d）$d_{n, k} \Delta d_{n, p}>d_{n, k+p-2}$ whenever $n \geq 5,3 \leqslant k$ ，p ，and $k * p \leq 2^{n} * 2 ;$

$$
\text { (e) } a>d_{5,13}, b>d_{5,18} \text {, and } a \Delta b-\varepsilon<d_{5,31}
$$

Then the map $d_{n, k} \longmapsto 1-k / 2^{n}$ is an order－preserving bijec－ tion between $D \cup\{0\}$ and the set of all（notice that $d_{n+1,4} \longmapsto 1-2 / 2^{n}$ and $d_{n+2,4} \longmapsto 1-1 / 2^{n}$ dyadic ration－ als in the interval $[0,1[$ ，which is dense in I ，too．Its unique extension f to the whole of I is an order－isomorph－ 1sm I $\approx I$ with the property
（2．7）for any $n \geq 5$ and any $k, p=3, \ldots, 2^{n}$ ，

$$
\left.d_{n k} \not \Psi^{f_{d_{n, p}}}=d_{n, \min \left(2^{n}, k+p\right.}\right)
$$

We have $x \Delta 1=x$ 田 ${ }^{\mathcal{L}_{1}}=x, x \Delta 0=x$ 田 ${ }^{P_{O}}=0$ for any $x \in I$ ． Next，if $0<x, y<1$ we can take the first $n \geq 5$ with $d_{n, 3}>x$ ， $\Sigma>d_{n, 2^{n}-1}$（this n certainly exists because D is donse in I）
and consider the last k and p in $\left\{3, \ldots, 2^{n}\right\}$ with $d_{n, k} z^{x}$ and $d_{n, p} \geq y$, respectively. Then $x>d_{n, k+1, y>} d_{n, p+1}$, and

$$
=d_{n, k+p}<d_{n, k+1} \Delta d_{n, p+1} \leqslant x \Delta y
$$

 $=d_{5,31}>a \Delta b-\varepsilon$.

Thus we only have to construct the family (2.6). Choose a sequence $e_{5}<e_{6}<\ldots<e_{n} \ldots$ with $e_{n} \pi 1$ and $f i x$ a wellordering of the countable dense set D (when we mention the first element of some nonempty subset of D in the sequel we shall be referring to just this ordering). We shall proced by induction on n.
I. For $n=5$ first choose $d_{29} \in D$ with $a \Delta b-\varepsilon<d_{29}<$ $<\Delta \Delta b$.

Since $a \Delta b>d_{29}$ it follows from 2.l.l that there exists $d_{18} \in D$ such that $d_{29}<d_{18}<b, a \Delta d_{18}>d_{29}$.

Similarly we can use 2.1 .1 and the last inequality to ensure the existence of some $d_{13} \in D$ with $d_{18}<d_{13}<a, d_{13} \Delta d_{18}>$ $>\mathrm{d}_{29}$.

Next there exists $d_{17} \in D$ so that $d_{18}<d_{17}<d_{13}$ and $d_{17} \Delta d_{18}>d_{29}$.

Now pick d_{14} through d_{16}, and d_{19} through d_{23} so that $d_{17}<d_{16}<d_{15}<d_{14}<d_{13}$ and $d_{29}<d_{23}<d_{22}<d_{21}<d_{20}<d_{19}<d_{18}$ Because Δ is isotone we have

$$
d_{\mathbf{k}} \Delta d_{p} \geq d_{17} \Delta d_{18}>d_{29}
$$

whenever $13 \leqslant k \leqslant 17,13 \leqslant p \leqslant 18$ so that we can successively pick
elements d_{24} through d_{28} with the properties

$$
\begin{aligned}
& d_{29}<d_{24}<d_{23} \wedge\left(d_{13} \Delta d_{13}\right) \\
& d_{29}<d_{25}<d_{24} \wedge\left(d_{13} \Delta d_{14}\right) \\
& d_{29}<d_{26}<d_{25} \wedge\left(d_{13} \Delta d_{15}\right) \wedge\left(d_{14} \Delta d_{14}\right) \\
& d_{29}<d_{27}<d_{26} \wedge\left(d_{13} \Delta d_{16}\right) \wedge\left(d_{14} \Delta d_{15}\right) \\
& d_{29}<d_{28}<d_{27} \wedge\left(d_{13} \Delta d_{17}\right) \wedge\left(d_{14} \Delta d_{16}\right) \wedge\left(d_{15} \Delta d_{15}\right)
\end{aligned}
$$

Finally we choose d_{30} and d_{31} so that a $\Delta b-\varepsilon<d_{31}<d_{30}<$ $<d_{29}$ and put $d_{32}=0$.

Since $1 \Delta 1>d_{22}$ and $1 \Delta d_{k}=d_{k}>d_{10+k}$ for each $k=13, \ldots$...,22, Lemma 2.1.1 guarantees the existence of some $d_{12} \in D$ such that $d_{12} \Delta d_{12}>d_{22}$ and $d_{12} \Delta d_{k}>d_{10+k}$ for all $k=13, \ldots$...,22. We pick one and proceed similarly in all the remaining steps. Thus we obtain in turn:
$d_{11} \in D$ with $d_{11} \Delta d_{11}>d_{20}$ and $d_{11} \Delta d_{k}>d_{9+k} ; k=12, \ldots, 23 ;$
$d_{10} \in D$ with $d_{10} \Delta d_{10}>d_{18}$ and $d_{10} \Delta d_{k}>d_{8+k ;} ; k=11, \ldots, 24 ;$
$:$
$d_{4} \in D$ with $d_{4} \Delta d_{4}>d_{6}$ and $d_{4} \Delta d_{k}>d_{2+k} ; k=5, \ldots, 30 ;$
and finally $d_{3} \in D$ with $d_{3}>e_{5}, d_{3} \Delta d_{3}>d_{4}$, and $d_{3} \Delta d_{k}>d_{1+k}$; $k=4, \ldots, 31$.

Since Δ is commutative, putting $d_{5, k}=d_{k}$ for $k=3, \ldots$..., 32 yields a finite sequence that fulfils, for the fixed $n=5$, the conditions (b), (d), and (e).
II. Induction step. Assume given a family
$\left\{d_{m, k} ; 5 \leqslant m \leqslant n, 3 \leqslant k \leqslant 2^{m}\right\}$ such that every $d_{m, k}$ belongs to D, the conditions (b) and (d) are satisfied for all $m \leqslant n$, the condition (c) is satisfied for all $m \leqslant n-1$, the condition
(e) is satisfied, and $d_{m, 3}>e_{m}$ holds for each $m=5, \ldots, n$. For any $k=3, \ldots, 2^{n}$ put $d_{n+1,2 k}=d_{n, k}$. Then take the first element d of the nonempty subset
$\left\{t \in D \mid t<d_{n, 3}\right\} \backslash\left\{a_{n, k} \mid k=3, \ldots, 2^{n}\right\}$
in D. There exists the unique k_{0} such that $3 \leqslant k_{0} \leq 2^{n}-1$ and $d_{n, k_{0}+1}<d<d_{n, k_{0}}$. Put $d_{n+1,2 k_{0}+1}=d$ (this, together wd th $d_{n, 3}>\theta_{n} \not \subset 1$, ensures that all elements of D will eventually get included in our family). For $k+k_{0}, 3 \leqslant k \leqslant 2^{n}-$. pick an arbitrary element $d_{n+1,2 k+1} \in D$ so that $d_{n, k+1}<d_{n+1,2 k+1}<d_{n, k}$. We have defined all the members $d_{n+1, k} ; 6 \leq k \leq 2^{n}$. Obviously. $I>d_{n+1,6}>d_{n+1,7}>\ldots>d_{n+1,2^{n+1}=0 .}$

Now we shall verify that

$$
d_{n+1}, k \Delta d_{n+1, p}>d_{n+1, k+p-2}
$$

holds whenever $6 \leqslant k, p$ and $k+p \leqslant 2^{n+1}+2$. We shall distinguish the following three cases.

1. If $k=2 r$ and $p=2 s$ then $r+s \leqslant 2^{n}+1$ and by the induction hypothesis we have $d_{n+1, k} \Delta d_{n+1, p}=d_{n, r} \Delta d_{n, s}>$ $>d_{n, r+s-2}=d_{n+1, k+p-4}>d_{n+1, k+p-2}$
2. If exactly one of the numbers k, p is odd, e.g. $k=$ $=2 r, p=2 s+1$ then $r+s \leqslant 2^{n}+1$ and we have $d_{n+1, k} \Delta$ $\Delta d_{n+1, p} \geq d_{n, r} \Delta d_{n, s+1}>d_{n, r+s-1}=d_{n+1, k+p-3}>d_{n+1, k+p-2}$.
3. If $k=2 r+1$ and $p=2 s+1$ then $r+s \leq 2^{n}$ and we have $d_{n+1, k} \Delta d_{n+1, p} \geq d_{n, r+1} \Delta d_{n, s+1}>d_{n, r+s}=d_{n+1, k+p-2}$.

It remains to define $d_{n+1, k}$ for $k=3,4$, and 5. Again we recall 2.1 .1 and choose successively
$d_{n+1,2} \in D$ so that $d_{n+1,5} \Delta d_{n+1,5}>d_{n+1,8}$ and $d_{n+1,5} \Delta d_{n+1, k}>$ $>d_{n+1,3+k}$ for each $k=6, \ldots, 2^{n+1}-3$;
$d_{n+1,4} \in D$ so that $d_{n+1,4} \Delta d_{n+1,4}>d_{n+1,6}$ and $d_{n+1,4} \Delta d_{n+1, k}>$ $>d_{n+1,2+k}$ for each $k=5, \ldots, 2^{n+1}-2$;
and finally
$d_{n+1,3} \in D$ so that $d_{n+1,3}>e_{n+1}, d_{n+1,3} \Delta d_{n+1,3}>d_{n+1,4}$, and $d_{n+1,3} \Delta d_{n+1, k}>d_{n+1,1+k}$ for each $k=4, \ldots, 2^{n+1}-1$.
2.1.3. Let Δ satisfy the assumptions of 2.1. Take a countable dense subset D of I which misses 0 and 1. Since 1 is the unit in (I, Δ) and Δ is lower-semicontinuous the set (2.8) $A=\{(a, b, m) \mid a, b \in D, a \geq b, a \Delta b>1 / m\}$
is infinite countable. Owing to 2.1 .2 we can select for each $(a, b, m) \in A$ a tensor product $a_{a, b, m}$ on I so that the ordered semigroups ($I, a_{a, b, m}$) and (I, 田) are isomorphic, $x a_{a, b, m^{y}} \leqslant$

We set
(2.9) $x \circ y=V\left\{x a_{a, b, m^{y}} \mid(a, b, m) \in A\right\}$, all $x, y \in I$.

Clearly $0 \leqslant \Delta$ holds in $\sigma(I)$. Now suppose there exist x, $y \in I$ with $\times \mathbf{y}<x \Delta y$. Then $x, y \neq 0,1$. Since Δ is lower-semicontinuous there exist $x_{1}<x$ and $y_{1}<y$ such that $x \quad y<x_{1} \Delta y_{1}$. Because D is dense in I we can take some $a, b \in D$ with $x_{1}<a<$ $<x, y_{1}<b<y$, and, say, $a \geq b$. For every natural number $m>$ $>1 /\left(x_{1} \Delta y_{1}-x 0 y\right)$ we then have $a 0 b \geq a a_{a, b, m} b a \Delta b-$ $-1 / m \geq x_{1} \Delta y_{I}-1 / m>x \quad y \geq a \quad b$, which is abourd. Thus $0=\Delta$ and the proof of 2.1 is complete.
2.2. Corollary. For any $口, \square^{\prime} \in \mathfrak{J}(I)$ the operation
Δ defined on I by the formula

$$
\begin{equation*}
x \Delta y=(x \square y) \wedge\left(x \square^{\prime} y\right) \tag{2.10}
\end{equation*}
$$

fulfils the assumptions of 2.1 hence $\Delta=V \varphi r$ in $\sigma(I)$ for some subset $\varnothing \neq \mathscr{C} \subseteq \mathcal{T}^{\mathcal{T}}(I)$ ．Thus，if the couple $\left\{a, a^{\prime}\right\}$ has a meet in $\mathcal{F}(I)$ then the meet necessarily coincides with （2 20）．Conclusion：$\left\{\square, a^{\prime}\right\}$ has a meet in $\mathscr{T}(I)$ iff the operation（2（O）is associative．

2．3．Corollary．Owing to 2.2 it now suffices to find an example of two tensor products on I whose meet in $\sigma(I)$ is not associative in order to prove that $\boldsymbol{J}(I)$ is not a lower semilattice．

Example．Let $口=\mathbb{B}$ and let $\square^{\prime}=$ P $^{f^{\prime} \text { where the order }}$ isomorphism $f: I \approx I$ is defined by the formula

$$
\text { (2.11) } f x= \begin{cases}x & \text { if } 0 \leqslant x \leqslant 1 / 8 \text { or } 1 / 2 \leqslant x \leqslant 1 \\ 2 x-1 / 8 & \text { if } 1 / 8 \leqslant x \leqslant 1 / 4 \\ x / 2+1 / 4 & \text { if } 1 / 4 \leqslant x \leqslant 1 / 2\end{cases}
$$

Then

$$
\begin{aligned}
& 3 / 4 \text { 由 }^{\mathrm{P}} 7 / 8=3 / 4 \text { 田 } 7 / 8=5 / 8, \\
& 5 / 8 \text { 田 }{ }^{f} 1 / 2=5 / 8 \text { 由 } 1 / 2=1 / 8 \text {, } \\
& 7 / 8 \text { 田 }{ }^{\mathrm{f}} 1 / 2=\mathrm{f}^{-1}(3 / 8)=1 / 4<3 / 8=7 / 8 \text { 田 } 1 / 2 \text {, } \\
& 3 / 4 \text { 由 }^{\mathrm{P}} 1 / 4=\mathrm{f}^{-1}(3 / 4 \text { 田 } 3 / 8)=\mathrm{f}^{-1}(1 / 8)=1 / 8>0= \\
& =3 / 4 \text { 田 } 1 / 4
\end{aligned}
$$

hence

$$
\begin{aligned}
(3 / 4 \Delta 7 / 8) \Delta 1 / 2=5 / 8 \Delta 1 / 2 & =1 / 8>0=3 / 4 \Delta 1 / 4= \\
& =3 / 4 \Delta(7 / 8 \Delta 1 / 2)
\end{aligned}
$$

and the meet Δ of \square and a^{\prime} in $\sigma(I)$ is not associative． Conclusion： $\mathscr{T}(I)$ is not a lower semilattice．
2.4. Corollary. If $\mathfrak{T}(I)$ were an upper semilattice then by Proposition 1.5 all nonempty joins would exist in $\mathcal{T}(I)$. In particular, for any \quad, $\square^{\prime} \in \mathscr{T}(I)$ the nonempty set of all lower bounds of $\left\{\square, \square^{\prime}\right\}$ in $\mathcal{T}(I)$ would have a join in \mathfrak{J} (I), which contradicts 2.3. Conclusion: \mathfrak{J} (I) is not an upper semilattice either.
2.5. Remark. On the other hand, it follows trivially from 2.1 that any $a \in \mathcal{T}(I)$ is a join in $\mathcal{T}(I)$ of a countable set of elements isomorphic to \mathbb{H}. In view of 1.5 it is natural to conjecture that there always exists even a non-decreasing sequence $\left\{\square_{n} ; n \in \omega\right\}$ of isomorphs of \notin so that $\square_{n} \not \subset \quad$. This, however, remains an open question.

References

[1] BIRKHOFE G.: Lattice theory, $3^{\text {rd }}$ ed., AMS Colloquium Publications, Providence, 1967.
[2] DILWORTH R.P. and M. WARD: Residuated latices, Trans. Amer. Math. Soc. 45(1939), 335-354.
[3] EILINBERG S. and G.M. KELLY: Closed categories, in Proceedings of the Conference on Categorical Algebra, La Jolla 1965, Springer-Verlag 1966, pp. 421-562.
[4] MENU J. and J. PAVELKA: A note on tensor products on the unit interval, Comment. Math. Univ. Carolinae 17(1976), 71-83.
[5] MOSTERT P.S. and A.L. SHIELDS: On the structure of semigroups on a compact manifold with boundary, Annals of Math. 65(1957), 117-143.

University of Antwerpen	Matematicko-fyzikálni fakulta
$2020-A n t w e r p e n ~$	Karlova universita
Middelheimlaan 1	Malostranské námésti 2/25
Belgium	11008 Praha 1
	Ceskoslovensko

(Oblatum 3.3. 1977)

- 341 -

