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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CABOLINAE 

18,2 C1977) 

COMPLETION OF SEQUENTIAL CAUCHX SPACES 

R. FRl6, 2ilina and D.C. KENT, Pullman 

Abstract: We study two types of sequential Cauchy spa
ces' protectively generated by classes of functions, their 
completions, and their mutual relations. 

Key words: Sequential Cauchy space, completion, conver
gence space, sequential envelope. 

AMS: 54D55 Ref. 2.: 3.961.1 

1 . I n t r o d u c t i o n . For the r eade r s convenience we r e c a l l 

i n t h i s s e c t i o n some bas ics about ( s equen t i a l ) Cauchy s p a c e s . 

Notat ion 1 . 1 . I f < x n > , < yn> are two sequences , t h e n 

< x n > A < y n > denotes a sequence < z n > defined as fo l l ows : 

z l ~ X 1 J z 2 ~ y l » z 3 * x2» z4 s y 2 , # # # > i # e * x n " z 2 n - l ' y n ~ 

~ z2n* 

D e f i n i t i o n 1 .2 . A Cauchy space i s a p a i r (X,L) , whera 

X i s a se t and L a c o l l e c t i o n of sequences r ang ing in X such 

t h a t 

(1) < x >€ L for each x e L; 

(2) < xn>€.L impl ies < x n > 6 L for each subsequence 

< x n > of < x n > ; 

(3) i f < x n > , ^ y n > € L and t h e r e are subsequences 

< x n > of < x n > and < y n > of < y n > such t h a t xR » y n , n e N , 

then < x n > A < y n > 6 L; and 
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(4) i f < xn > A < x > e L and < xn > A < y > 6 L, then 

x = y . 

If (X,L) i s a Cauchy space, then L i s called a Cauchy struc

ture^ for X. If L sat is f ies the additional condition 

(5) < xn> € L whenever 

(a) each subsequence < xn > of < xn > contains a sub

sequence ( xn > of < xn > such that < xn > € L; and 

(b) i f < xn > and < xn > are subsequences of <x n > 

such that < x n > , <xn '> e L, then < x n > A < x n ' > € L; 

then (X,L) IS said to be a * Cauchv apace* 

The effect of condition (5) can be brought out by con

sidering the real line with i t s usual metric. Every bounded 

sequence of real numbers has a Cauchy subsequence. Hence, 

every bounded sequence of real numbers sat is f ies condition 

(a). Yet every bounded sequence of real numbers i s not Cau

chy in the usual sense because (b) is lacking; e .g. consider 

the sequence 0, 1, 0 , 1, 0, 1, . . . . 

A Cauchy space (X,L) induces a convergence space 

(Xf<£,X) in the following natural way: x » <£-lim ^ ifC 

< x n > A < x > e L » Moreover, i f (X,L) is a * Cauchy space» 
cd* 

then <£ » <£* . The topological modification X 1 of A 

will be called a topological closure for X. A subspace X of 

X i s topologically dense in X i f X n X * X. A Cauchy space 

i s said to be complete i f each Cauchy sequence converges 

in the induced convergence space. A mapping f: (X-pL^)—-* 

—.• (X^,L^) i s said to be Cauchy-continuous i f < xn > €. L̂  

implies < f (xn) > € !*£• The set of a l l Cauchy-continuous func

tions on (X,L) is denoted by C(X,L). The set 
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K » \< tm > € (3(X,L))N; l i m ^ . ^ tml*n) exists for each 

< xn> e L } is a Cc-uchy structure for C(X,L) and i s said to 

be the continuous Cauchy structure. The space (C(fi(X,L),M),M) 

i s denoted by ($r(XfL) , l r ) . The evaluation mapping 

eVj,: (X,L)—> (^CXjL),!!2) i s defined by evx(x) -* $ x , where 

for f e3(XfL) we define $ x ( f ) - f (x); i t i s always Cauchy-

continuous. If i t i s a Cauchy-embedding ( i . e . a Cauchy-ho-

meomorphism into) f then (X,L) is said to be O-embedded. 

2- Projective generations of Cauchy structures. 

Proposition and definition 2 .1 . Let (X,L) be a Cauchy 

space and Dcc(X fL), D separates points of X* Let 

L-y-s-tXxjj) € X*; lim f(xR) exists? whenever f € D J and 

*>d ^ < x n > € X l f ; n ^ n _ ^ f a (xn ) exists whenever <fm>» fm € 

€ D i s ® Cauchy sequence in (8(X,L),M)i • Then 1^ and Ld are 

# Cauchy structures for X ,and LcL^cL^* If L =- L ,̂ then Lf 

resp. (X,L)f is said to be protectively generated by D* If 

L a Ld, then L, resp. (X,L)^ i s said to be c-pro.1ectively 

ggngr^teiii fay D-

It follows immediately that i f a space is projectively 

generated by D, then i t i s also c-projectively generated by 

D. The converse statement i s not true in general aa i t will 

be shown by a counterexample (see Proposition 4.7)» In 

[I - K] i t was proved that for D -* C(X,L) the following are 

equivalent: 

(a) (X,L) is 6-embedded; (b) L * Lp; (c) L = 1^ (the ori

ginal notation i s L^ » Lg., Ld =- I|-). 
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3* d-completion. 

Def ini t ion 3 . 1 . Let (X,L) be a Cauchy space c - p r g j e c t i -

vely generated by DcC(X,L). A complete Cauchy space iX^9Lj) 

i s said to be a d-completion of (X,L) i f 

(a) (X,L) i s a t o p o l o g i c a l l y dense subspace of (X^jL-^ 

Cb) for each f e D there i s f eOtt-^Lj) such that 

f =- I | X, i . e . Dc 6(X1 ,L1) | X; 

(c) ( X i * 1 ^ i s c-pro:jectively generated by 

D * {t6C(X1,I1); f |XT€D5 ; and 

(d) D and D endowed with the coiresponding continuous 

Cauchy structures are Cauchy-homeomorphic under the 

natural correspondence, i . e . the correspondence 

f — > f | X = f i s one-to-one and < f n > t f n € Dt i s a 

Cauchy sequence in (Ctt-^L-^M) i f f < f n > , fn -

== fn | X, i s a Cauchy sequence in (C(X,L),M)# 

Lemma j . 2 . Let (X,L) be a Cauchy space c -project ive ly 

generated by DcC(X,L), (D,M | D) the subspace of (6(X,L),M) t 

and e a mapping of (X,L) into ( C ( D , M 1 D ) , M ) defined as f o l 

lows: e(x) -» $ x , where for f e D we define $ x ( £ ) - f (x)« 

Then e i s a Cauchy embedding. 

Lemma 3 .£ was proved i n [ I - K3 in the spec ia l case of 

D » 8(X,L). The proof of the general case i s similar* 

Theorem 3 . 3 . Let (X,L) be a Cauchy space c -projec t ive -

l y generated by DcC(X,L). Then there e x i s t s a d-comp letioa 

of (X,L). 

Proof. I t fol lows from Lemma 3 .2 that ident i fy ing x with 

e(x) we can consider (X,L) as a subspace of (C(D,M | D),M). We 

s h a l l prove that the subspace (X-^L^) of (C(D,M | D) ,M), where 
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X̂  i s the topo log ica l closure of X in (C(D,M 1 D),M) and Lx = 

s M| X l f i s a d-comp letion of (X,L). I t was proved i n [ I - K3 

that ( C ( D , M | D ) , M ) i s a complete space. Thus the c losed sub-

space ^xifLx^ of ( C ( D , M | D),M) i s complete. We are to prove 

that (X^L-J s a t i s f i e s cond i t ions (a) - (d) of Def in i t ion 3 . 1 . 

Condition (a) follows from the construction of (X, ,L . , ) . I t 

was proved in [ F ] that the space (C(X,L),M) i s C-embedded. 

Thus the subspace (D,M | D) ia also C-embedded, and hence the 

evaluation mapping evD: (D,M | D)—> (?T(D,M| D),M^) i s a Cau-

chy embedding. Consequently, for each f € D the image evD(f) » 

= f i s a Cauchy-continuous function on (C(D,M) D),M)* Since 

f ( $ ) » $ (f) for each $ e 6(D,M | D), we have f (x) = f (x ) for 

each $ x = x * X . Hence f » f | X̂  i s a Cauchy-continuous ex

tens ion of f onto (X-pL-^) and cond i t ion (b) i s s a t i s f i e d * The 

construction of f i s shown on the fol lowing diagram: 

-úi-

*» C(D,M| D) 

Now, we shall prove condition (d). It follows by a standard 

topological argument that the extension Fof f is uniquely 

determined. Hence the natural correspondence f—* f \ X = £ 

is one-to-one. Clearly, if < fn> f fn J XeD, is a Cauchy se

quence in (tiXlfL^)fU)f then < fn> $ fn - fn| X, is a Cauchy 

sequence in (C(X,L),M). Conversely, let <fn> be a Cauchy se

quence in (D,M | D). Since ev^ is a Cauchy embedding, the se-
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quence < f n > t tn » eVD(fn) f l s a Cauchy sequence in 

(Ĉ CD,M I D^M2). Hence <fn> , fn | X = fn, i s a Cauchy se

quence in ((kX-^L^) ,M). 

It remains to prove condition (c) . Let < # n > be a se

quence in X, c C(D,M | D) a u c n that 
( 1 ) limm,n-*a> ^m^n 1 e x i s * * whenever < fm> ,fme D,is 

a Cauchy sequence in (^X^,!*,) ,M). 

Since ? m ($ n ) * * n
( V » fm * ?m I x» " -followa from (d) that 

(l) i s equivalent to 

(2) l in^ n ^ » $ n f f m ) exists whenever < fm > is a Cau

chy sequence in (D,M | D)# 

Thus << | n >€ L-̂  and the proof i s complete. 

Theorem 3 .4. Let (X,L) be a Cauchy space c-projectively 

generated by Dc CCX,L). If (X^L-,) and (X ĵL )̂ are two d-com-

pletions of (X,L), then there is a Cauchy homeomorphism 

ht (X^jL^i—? (X^,^) such that h(x) = x for each xe X# 

Proof. For i - 1 , 2 , denote by D± =* •£ £ e 8(X i>L i); 

t | X 6 D } , by (DifM| DjL) the subspace of (6(XjL,Li) fM)f and 

by (D,M| D) the subspace of (C(X,L),M). It follows from (d) 

in Definition 3.2 that (D^M | Di) and (D,M | D) are Cauchy-

homeomorphic under the natural correspondence. Consequently, 

dj 2 (D̂ jM \ Dg,)—• (DX,M| D X ) , where for t£V2 i t s image 

<y(f) i s determined by <p(t) | X » f | Xf and hence also i t s 

f irst conjugate 9 * : (3(DlfM | D-̂  ,M) —> (C(D2,M | D.̂ ) ,M), 

cp* ( | ) a tjpo I f are Cauchy homeomorphisms* It follows 

from Lemma 3.2 that identifying x with e i (x ) # where for 

f c Di we define (eiCx)Mf) - f ( x ) , we can consider the comp

lete space (X i,L i) as a closed subspace of (C(Di9M ) Di) ,M)» 
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Now, an easy computation shows that for each xeX we have 

9*(x) * x. 

Id 
3^ ^ r **. ^ 

ЧД «• e -ict« e~ 

C ( D 1 , M | D 1 ) : s^ C ( D 2 , M | D 2 ) 

Since X is topologically dense in (X^L^), it follows by a 

standard topological argument that h * <y^\x^ is the desi

red Cauchy home omorphis m. 

4. P-cpapjLeUon* 

Definition 4 . 1 . Let (X,L) be a Cauchy space projective-

ly generated by Dc C(X,L). A complete Cauchy space (X-pL-^is 

said to be a D-completion of (X,L) i f 

(a) (X,L) i s a topologically dense subspace of (X-^fIJ-^); 

(b) for each fe D there i s f € CtX-^.L^ such that f -* 

* f | X, i . e . Dc C U - ^ ) J X; and 

(c) (X-^L.,) i s protectively generated by 

D =- -Cf e C(X1,L1); f | X* D J . 

Proposition 4 .2 . Let (XfL) be a Cauchy space p ro tec t i 

vely generated by DcC(X,L) and (XfCC*,A) the associated 

convergencs space. Then: 

(a) Dc C(X) and (X,<-£*,X) i s D-sequentially regular . 

(b) L is the set of a l l D-fundamental sequences in 

(X f Ce*,A). 

(c) (X,<£*,,X) i s D-sequentially complete i f f (X,L) 
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i s complete. 

The straightforward proof i s omitted. 

Proposition 4.3. Let (Xf «£*,&) be a D-sequentially 

regular convergence space and L the set of a l l D-fund a mental 

sequences. Then: 

(a) L i s a * Cauchy structure for X. 

Cb) DcC(X-L) and (XfL) is protectively generated ty D» 

(c) (X9£*fX) i s associated with (X,L), 

(d) (XfL) i s complete i f f CXf*e*f A) i s D-sequentially 

complete. 

The straightforward proof i s omitted. 

Theorem 4.4. Let (XfL) be a Cauchy space protectively 

generated by DcC(XfL). Then there exists a D-completion of 

(XfL). 

-rrpoff. Let (Xf«-£f A) be the convergence space associa

ted with (XfL). It follows from (a) in Proposition 4*2 that 

lX9<£ 9X> i s D-sequentially regular. Let fX^o^ , \ ) be a 

B-eequential envelope of (X9£,X)9 D * -tf6C(X]L); f |XeD? # 

and L̂  the set of a l l l>-fundamental sequences in X̂ « It f olr 

Iowa from Proposition 4*2 and Proposition 4.3 that (X^L.,) 

i s a D-completion of (XfL)# 

Note: 4.5. Let (Xf«£*f X) be a D-sequentially regular 

convergence space. Let L be the set of al l D-fundamental se 

quences in X. It follows from Proposition 4.3 that (XfL) i s 

a * Cauchy space protectively generated by Dcc(XfL)« Let 

(X1,L1) be a D-completion of (X,L). Using Proposition 4.2 and 

Proposition 4.3 i t i s easy to sec that the convergence space 

(X^9£^9 ^ 1 * associated with (X-̂ L-̂ ) i s a D-sequential enve— 
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lope of (X,ae* fX). 

Theorem 4.6. Let (X,L) be a Cauchy space projectively 

generated by Dc CCX,L)# If (X^L^) and (X2fL^J are two D-eom-

pletions of (XfL)f then there is a Cauchy homeomorphism 

hs (X^-L^)—> (X ĵL )̂ such that for each xe X we have h(x) * 

-» x. 

Proof. Let (Xf<-£f;A) be the convergence space associ

ated with (XfL) and (X^fc£if Ot^) the convergence space asso

ciated with (X1 ,L i) , i s 1,2, It follows from Note 4.5 that 

(X^fo£^,C\^) i s a D-sequential envelope of (Xf£tX)* Henee 

there Is a homeomorphism hi tX^fet^f ^.,>—* ^fc'^2*^*2^ 8UCk 

that for each x*X we have h(x) « x (ef. Theorem 5 intNJK 

Since (XpL^) are complete space, h: (X-^L^J—* (X^,!^) i s a 

Cauchy homeomorphism. 

£• Example -> 

Peflnlttgn ?t^* I^t X4-0 and < x n > f < y n > 6 X11. la saor 

that < yn> U aeriY^d from < xR> , in symbols < yn> -1 < x^>, 

i f F(< yn> ) 3 f ( <xn> ) , where F< < an> ) denotes the f i l t e r 

generated by sections of a sequence < zQ> # 

w ( x 0 ) . Let .* e N*, m0eH, Ac (^y . . C - t ^ . , ) ) , and 

f € \ 0 , 1 J * a function on X̂  defined as follows: 

f(x) m i for xeCAU( U M tx.- n))UCxfn ) ) , 

* « N m0« m0
 9 

f(x) « 0 otherwise* 

Let 5" be the set of a l l such functions and (X^-L^) the Cauchy 

space protectively generated by D. Let X » LJ V^J(»„) , 
/in,, e N 4i.cw •"» 
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x £ X l f or < z n > ^ <<x m n >A< xm> ) f meN? , and D * D I X. 

Since (XfL) i s clearly project ively generated by D i t i s 

also e-projeetively generated by D and hence (X,L) possesses 

both a D-completion and a d-completion. 

Proposition 5.3 . For D » D | X̂  the space (X^.L-J is c-
A 

projectively generated by Df but not projectively generated 

by D. 
gini# L2 » \ < 2sn>e *£; <zn>-3< x >f xeX^, or 

< z n W ( < * m n > A < **>>• o r < z n> * ( < *m > A < x o > > * a n d 

< x m > e CI^| XL - L X ) . 

Proposition 5.4. (X1,L1> i s a d-completion of (X,L). 

Hint. L * 4 < s n > 6 .# ; <aB>-?< x > f xeX f or 

< Z n > ^ < x n n > , I6NJ . 

Proposition 5.5. (X^L^) i s a D-completion of (X,L). 

Propoaition 5.6. D and D endowed with the corresponding 

continuous Cauchy structures are not Cauchy-homeomorphic un

der the natural correspondence! 

Proof. For otherwise iX^fL^) would be also a d-comple

tion of (X,D, which would imply the existence of a Cauchy 

homeomorphiam h: (X^f.U)—> (X^,!-^ such that for each x«X 

we have h(x) » x. 

Note 5.7., This shows that the condition (d) in Defini

tion 3.1 i s necessary and sufficient for the uniqueness of 

the d-completion up to a commuting Cauchy homeomorphiam (cf. 

Theorem 3 . 4 ) . 
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Note 5.8. Let (X,L) be a C-embedded Cauchy space. Since 

for D m C(X,L) we have L -» L- = Lp, i t follows immediately 

that a d-completion of (X,L) i s also a D-completion of (X,L)« 

Consequently, the two completions are equivalent. It might be 
A 

of some interest to characterize classes DcC for which the 

two completions are equivalent. 
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