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ON THE STRICT ODNTlEXITY O.F THE BOLAR OP1HATOR 

Josef DANES, Praha 

Abstract: There i a proved that the polar operator i s 
convex in any l inear topologica l space and s t r i c t l y convex 
i n any aeparated l o c a l l y convex space. 

Key words: Linear topologica l spaces- l o c a l l y convex 
spacea, polar operator, convexity, s t r i c t convexity* 
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Secondary 46A20 

The purpose of t h i s note i s to prove the fol lowing t h e o ­

rem. 

Theorecu Let X be a separated rea l l o c a l l y convex space -

n i -1 an in teger , &if*$&n nonempty subsets of X and t ^ f . . . 

. . . f t n nonnegative numbers with *&±si * i s --• ^-*ea 

The equal i ty holds i f and only i f cocl ( A j i M O i ) « 

» cocl CAj vi 0 } ) for a l l i , j with t j t j > 0 . 

I f X ia a real l inear topologica l space, M a subset of 

X and W a subset of the dual space x ' f then co(M)f cl(M), 

cocl(M) denotes the convex h u l l , closure and convex closed 

hul l of M, r e s p e c t i v e l y , and M° M x ' e x ' : < M , X ' > > 1 ? f 

H** =*«{xeX: < x f N > * l i the polar s e t s of M and Nf r e s p e c t i ­

ve ly (where, for examplef < M fx'> £ 1 means that one i s an 
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upper bound for the set < M,x >=-•(< x , x ' > : x € M j ) • 

I f X i s a l inear space and M a subset of X, then M* 

denotes the se t U i C 0 ,x 3 : CO,x)c M} *&{ x e X: t O , x ) c M \ 

C C.0,0) * 4 0 J ) . 

V.P. Fedotov [11 asserts that if A, ,...,i!L are closed 

convex subsets of a real separated locally convex space X 

containing the origin, then 

At • . . . • A„ A? + . . . + A° rt 

x n _ / x n \ o 

n 3 V n" ; ' 

the equal i ty being true i f f Â  = . . . =- A . It seems that h i s 

consideration imp l ies only that t h i s inequal i ty holds i f the 

l e f t hand s ide of i t i s rep laced by i t s closure (or by i t s 

C.)^. - c l o s u r e ) . 

Our lemma 3 almost coincides with Hi, Lemma 1 ] * Lemma 4 

below has been ind icated by Fedotov in t l f Lemma 21 in case 

t -* 4 but h i s proof i s not clear ( i t seems that i t contains 

a gap at the induction s t e p and that a lemma l ike our lemma 

2 i s necessary) . 

In what fol lows our Theorem i s d iv ided into two theorems 

1 and 2 . The proof of Theorem 2 i s quite d i f ferent from that 

of the corresponding part of t i l and seems to be more s tra igh t ­

forward. 

The proof of the fol lowing easy lemma i s omitted . 

Lemma 1. Let X be a l inear space and H a subset of X. 

Then the fol lowing assert ions hold: 

( i ) M 4̂= 0 i f and only i f M contains 0; 

Cii) McM* i f and only i f M i s starahaped (re la t ive 

to 0 ) ; 

( i i i ) Mfc = O T>^ (1 + r)M whenever M contains 0; 

- 394 -



(iv) If C i s a linear topological space, then M* c 

c cl(M); 

(v) i f X is a linear topological space and U i s star-

shaped (relative to 0 ) , then McM^c cl(M). 

Theorem 1* Let X be a (possibly non-separated) real l i ­

near topological space, n J l an integer, A-^ , . . . ,^ nonempty 

subsets of X and * ! ! • • • f t n nonnegative numbers with 

S J a l t i = 1. Then 

< * i < W ° c ( * l - * V?>* • 

Proof. We may restrict ourselves to the esse when al l 

Ai's are convex and contain 0. Let-x' in C2£ n
= i ^jA*)0 be 

given and set h^ « sup<A i f x'>€ CO,+ ooJ . Then h7 x'e A | 

C oo ""l = o ) whenever hi> 0, so that 

(1) C S t t ^ J x ' e %+ t±Aj 

where £ + i s the summation over a l l i ' s with hi> 0. If h^ = 

= 0 and a > 0 , then a"" x'fe A£ SO that 

C2> ( S 0 t i a " 1 ) x ' « %0 t4Aj f 

where 2 0 denotes the summation over al l i ' s with ĥ  =- 0. 

.Prom (1) and (2) i t follows that 

(3) ( £ + t ^ 1 -> S 0 t^lx'e £ n
= 1 t tAj 

for each a> 0. 

If t i > O f then ^ i s f in i te , because ^Ai c 2£ i = 1 tiAi 

implies x'c ( t iAi) 0 » t^ A£ SO that h± = sup<Ai,x'> = 

= t^1 sup <tiA i fx'> £ t^1 . Hence 1^ = +00 implies ^ » 0. 

Let bfc (Of-HX>) be arbitrary and set ĝ , == 1^ i f 3^ is f i -
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nite and g± « b otherwise* Then, by the Cauchy-Schwarz ine­

quality, 

2 ( ^ + ti%1«i • 2 0 t ^ a ^ - (as 5«i ti>2 »!• 

Letting b~-t> •«> , we set that 

t ^ * * ! * ! 1 * S « V " 1 ) C a i < | k t 1 l i i • ^ 0 t i a ) 2 1, 

i f wt agree that tjh^ » 0 whenever h^ » •oo Cand, consequent­

ly , t.̂  = 0 ) . .From this and (3) i t follows that 

C4> c X + 1 ^ • s0 t^rV € ^ n
a l t ^ g . 

It i s easy to see that 

2i + t ^ « 2S+ t ^ • ^ 0 t ^ « sup < £ n
s l t^x'H 

£ 1 

so that 2 ^ t . ^ • ! g 0 t^ -^1 • a. Hence, by (4) , 

(1 • a )* 3 * '* % J ^ t ^ J , i . e . , x 'e (1 • a) *£ n
s l t ^ J for 

each a > 0 . By lemma l , C i i i ) , x'g ( % n
a l *±kp' • 

The proof i s completed* 

Lemma 2. Let 0 < t « : l . Then the following definition 

(by induction) of two sequence* ** uk^k-*o a n d ^-*k^k=-o i s c o r " 
rect: 

(5) 

u 0 = t , , ^ . 1 - t , 

u0 v0 

"-*1 " 1 - V k V*+1 " - ~ " o ^ * • o x ~ ~*0 

Moreover, both sequences lie in (0,1), strictly increase and 

converge to one. 

Proof. We shall prove, by induction, the following as-
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sertion: 

W^k=-o> ^ v l^k-o a r e w e l 1 defined and s tr ic t ly C6n> 

increasing sequences contained in CO,l). 

(6-,) is true, because 1> 1 - u 2 > 0 . 1> 1 - v?>0, so 
x 0 ' 0 * 

that 

1 > u - = r^fo>v i"i- r^*'0* 
Suppose that (6 n) i s true for some n = m2 1 . Then we have 

V i " ^ * 
0 ffi 0 Ш—l 

As 1 > v m > v m - l > 0 a n d }Xm>9 ^ b y t n e inductive hypothesis), we 

have 1> 1 - V m > 0 f x > 1 ~ V m - l * ° a n d > consequently, 

%+!> uffl. The inequality u^* 1 follows from 

u o l • Vft A " *„*« 

u a 2 « P _ ^ O J L « x # 

^ 1 - V m * - V m 1 - v0vffi 

Similarly ^ v M l < 1. Hence (6 n ) holds for each n# 

Let u = lim u k, v = lim v k. From (5) i t follows that 

u
o . *o 

u - and v =* * — 

1 - v
0
v 1 - u

0
u 

leading to the following equation for u: 

u
Q
u* - (1 • u* - v*)u * u

Q
 = 0. 

2 2 
As 1 + u

0
 - v

Q
 = 1 * u

Q
 - v

Q
 * 2u

0
, the last equation is of 

the form 
U 0 U 2 - 2UQU + UQ a U Q (U - l ) 2 » 0 . 

This equation has the unique solution u * 1. Similarly v =- 1. 

Lemma 3* Let X be a separated locally convex space and 

A,B,C three nonempty subsets of X, If C absorbs A and A i C a 
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O A • B, then cocl ( C ) D B. 

Proof. We may suppose that X i s a rea l l o c a l l y convex 

space . Let us suppose that there i s a point x in B which i s 

not in cool (C)# Then there e x i s t s x ' in x ' such that 

< x f x'> > sup <C,x'> • As C absorbs A, the number sup <A,x'> 

i s f i n i t e . Then sup<A • Cfx*> « sup<A fx'> + s u p < C , x ' > < 

-< sup < A,x'> + <x f x '> -» sup < A,x'> * sup< B,x'> * sup <A * B, 

x ' > £ 8up<A • C,x'> f a contradict ion. 

L e j i a j l . **et X be a rea l separated l o c a l l y convex spa­

ce, A,B, and C three nonempty subsets of X and 0*~: t< l . I f 

tA • (1 - t ) B c C and tA° • (1 - t)B°c C°, then 

cocl (A U«fOl ) « cocl ( B U ( O T ) » cocl ( C l H o J ) . 

Proo.f-> I t i s c lear that we may r e s t r i c t ourselves t o 

the case when a l l s e t s A,B,C are convex, closed and contain 

0 , and to show that A -* B == C 

Let •luĵ jj.-gQ and ^.V^^so be the sequences from lemma 2 . 

We sha l l show, by induction, that 

(7 n ) ujLcecvgk, v n B c C c v ; X B 

holds for a l l n z O . 

(il0) i s true because u0Af vQBc uQA • vQBc C and u0A°, 

voB°C u0A° • v0B°c C°, i . e . C * (f°c (u0A°)° - u^A, 

(v 0 B°)° -» v ^ B . Let (7n) hold for some n = miO. Then 

u0A • vQBcC - (1 - v0Vm)C * v 0 v m C c ( l - v0vm)C + vQB 

so t h a t , by lemma 3f; u0Ac (1 - *0vm)C, --•«• u m+l A c C * S i m i " 

l a r l y ^-^iBc C. The other two inclusions in ( 7 . ^ ) fol low in 

the same manner by considering the polar s e t s to A,B, and C. 

Hence (7n) holds for a l l n £ 0 . 

As u-flXfiC for each n? 0 and x * A, and u^—* l t we have 
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that AcC. Similarly one sees that Cc A and Be Cc B, 

Theorem 2. Let the hypotheses of Theorem 1 be sat isf ied. 

If X i s locally convex and ( g n
s]L t ^ J 0 » (2 l l s l **>£)* » 

then cocl (Aj U { 0 J ) -= cocl (Aj U < 0 f ) for a l l i» j with 

t±t*> 0. 

Proof. From lemma 1, (v) i t follows that ( 22, n a l ^i^i)** 

-=- cl ( 2 1=:1 t ^ J ) . It is clear that we may restrict ourselves 

to the case when n > l , a l l k^ a are convex, closed and con­

tain 0, and al l t 1 ' s are poaitive. We have to show that A-, ** 

Set t a tx > A * Alf B = cl (^* ls:2 t
1 ^ - t^""1^) and 

C = ( 2 1 = 1 t ^ ) 0 . Then 

tA * (1 - t )Bc clCSj 1=:1 t1A1)c C, 

because ( £ 1 = 1 t±*t)° = (ol( * 1 = 1 t^ 0 ) )* 0 * « C°. As B° c 

c ( S , ^ t±(l - t1}~1A1);k (by Theorem 1) , we have that 

tA° * (1 - t)B°c txAj • ( S n
= 2 tjAj)^ c ( g . l s s l V 0 ) ^ « 

=- cl( & 1 = 1 t ^ J ) « (cl( 2J n
s l t1A°)X =* C° (we have used 

that Mfc • N*. c (M -K N)^ which i s true for any two subsets 

My N of a linear space)* Hence we conclude that A, = A = B *=-

- Cf by lemma 4. By the same reaaons one sees that also A.-* * 

-**. . . -st: A_« •*-- C 

The proof is completed* 

Remark. We hope that our Theorem will find applica­

tions in convex analysis. 

An eaay application ia as follow3. Let the hypotheses of 
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Theorem 1 be satisfied and let p be a K-subadditive func­

tional on x' (K£0; p(u + v)s£ Kp(u) • Kp(v) for all u,v in 

x ' ) . Then sup p(( 2 1 = 1 t ^ ) 0 ) * q(K,n)< 2l J ^ sup pCt^J)), 

sup pCCs; n
= 1 t j ^ ^ r t f i f ^ sup p ( t i 4 ) • (2* - n)p(O)), 

where c(K,n) * * ^ £ j \ =~ i^ (c(K,n) = 1 i f K = 1) and 

m is the f irst integer such that n**"1, provided p is continu­

ous on straight lines* 

R e f e r e n c e s 

[13 JPEDOTOF V.P.: An analogon of an inequality between arith­
metic and harmonic means for convex se t s , Optimi-
zacija 12(1973), 116-121. 
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