Commentationes Mathematicae Universitatis Caroline

Josef Daneš
 On the strict convexity of the polar operator

Commentationes Mathematicae Universitatis Carolinae, Vol. 18 (1977), No. 2, 393--400

Persistent URL: http://dml.cz/dmlcz/105783

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

$$
18,2 \text { (1977) }
$$

ON THE STRICT CONVEXITY OF THE POLAR OPMRATOR
Josef DANES, Praha

Abstract

There is proved that the polar operator is convex in any linear topological space and strietly convex in any separated locally convex space.

Key mords: Linear topological spaces, locally convex spaces, polar operator, convexity, strict convexity.

AMS: Primary 46月05 Se condary 46A20

The purpose of this note is to prove the following theorem.

Theorem. Let X be a separated real locally convex space, $n \geq 1$ an integer, A_{1}, \ldots, A_{n} nonempty subsets of I and t_{1}, \ldots \ldots, t_{n} nonnegative numbers with $\sum_{i=1}^{n} t_{i}=1$. Then

$$
\left(\sum_{i=1}^{n} t_{i} A_{i}\right)^{0} c\left(\sum_{i=1}^{n} t_{i} i_{i}^{0}\right)_{k}
$$

The equality holds if and only if cocl $\left(A_{1} \cup\{0\}\right)=$ $=\operatorname{cocl}$ (A, $u\{0\}$) for all i, j with $t_{i} t_{j}>0$.

If X is a real innar topological space, a subsct of X and I a subset of the dual space X^{\prime}, then co(M), cl(M), $\operatorname{cocl}(M)$ denotes the convex hull, closure and convex closed hull of M, respectively, and $M^{0}=\left\{x^{\prime} \in X^{\prime}:\left\langle M, x^{\prime}\right\rangle \geq 1\right\}$, $\mathrm{A}^{0}=\{x \in X:\langle x, N\rangle \leqslant 1\}$ the polar sets of M and N, respectively (where, for example, $\left\langle M, x^{\prime}\right\rangle \leq 1$ means that one is an
upper bound for the set $\left\langle M, x^{\prime}\right\rangle=\left\{\left\langle x, x^{\prime}\right\rangle: x \in M\right\}$).
If X is a linear space and M a subset of X, then \mathbf{M}_{*} denotes the set $U\{[0, x]:[0, x) \subset M\}=\{x \in X:[0, x) \subset M\}$ $([0,0)=\{0\})$.
V.P. Fedotov [1] asserts that if A_{1}, \ldots, A_{n} are closed convex subsets of a real separated locally convex space X containing the origin, then

$$
\frac{A_{I}+\ldots+A_{n}}{n}=\left(\frac{A_{I}^{0}+\ldots+A_{n}^{0}}{n}\right)^{0},
$$

the equality being true iff $A_{1}=\ldots=A_{n}$. It seems that his consideration implies only that this inequality holds if the left hand side of it is replaced by its closure (or by its (.) $*$-closure).

Our lemma 3 almost coincides with [1, Lemma 1]. Lemma 4 below has been indicated by Fedotov in [1, Lemma 2] in case $t=\frac{1}{2}$ but his proof is not clear (it seems that it contains a gap at the induction step and that a lemma like our lemma 2 is ne cessary).

In what follows our Theorem is divided into two theorems 1 and 2. The proof of Theorem 2 is quite different from that of the corresponding part of [1] and seems to be more straightforward.

The proof of the following easy lemma is omitted.
Lemma 1. Let X be a linear space and K_{M} a subset of X . Then the following assertions hold:
(i) $M_{*} \neq \emptyset$ if and only if M contains 0 ;
(ii) $M C M_{*}$ if and only if M is starshaped (relative to 0);
(iii) $M_{*}=\cap_{r>0}(1+r) M$ whenever M contains 0 ;
(iv) If C is a linear topological space, then $M_{*} C$ c cl(M);
(v) if X is a linear topological space and M is starshaped (relative to 0), then $M \subset M_{*} \subset \operatorname{cl}(M)$.

Theorem. Let X be a (possibly non-separated) real linear topological space, $n \geq 1$ an integer, A_{1}, \ldots, A_{n} nonempty subsets of X and t_{1}, \ldots, t_{n} nonnegative numbers with $\sum_{i=1}^{n} t_{i}=1$. Then

$$
\left(\sum_{i=1}^{n} t_{i} A_{i}\right)^{0} c\left(\sum_{i=1}^{n} t_{i} A_{i}^{0}\right)_{*}
$$

Proof. We may restrict ourselves to the case when all $A_{i}^{\prime} s$ are convex and contain 0 . Let. x^{\prime} in $\left(\sum_{i=1}^{n} t_{i} A_{i}\right)^{0}$ be given and set $h_{i}=\sup \left\langle A_{i}, x^{\prime}\right\rangle \in[0,+\infty]$. Then $h_{i}^{-1} x^{\prime} \in A_{i}^{0}$ $\left(\infty^{-1}=0\right)$ whenever $h_{1}>0$, so that

$$
\begin{equation*}
\left(\Sigma_{+} t_{i} h_{i}^{-1}\right) x^{\prime} \in \Sigma_{+} t_{i} A_{i}^{0} \tag{1}
\end{equation*}
$$

where Σ_{+}is the summation over all $i^{\prime} s$ with $h_{i}>0$. If $h_{i}=$ $=0$ and $a>0$, then $a^{-1} x^{\prime} \in A_{1}^{0}$ so that
(2)

$$
\left(\Sigma_{0} t_{i} a^{-1}\right)_{x}^{\prime} \in \sum_{0} t_{i} A_{i}^{0}
$$

where \sum_{0} denotes the summation over all i 's with $h_{i}=0$. From (1) and (2) it follows that

$$
\begin{equation*}
\left(\sum_{1} t_{i} h_{i}^{-1}+\sum_{0} t_{i} a^{-1}\right)_{x}^{\prime} \in \sum_{i=1}^{n} t_{i} A_{i}^{0} \tag{3}
\end{equation*}
$$

for each $a>0$.
If $t_{i}>0$, then h_{i} is finite, because $t_{i} A_{i} \subset \sum_{i=1}^{n} t_{i} A_{i}$
implies $x^{0} \in\left(t_{i} A_{1}\right)^{0}=t_{i}^{-1} A_{i}^{0}$ so that $h_{1}=\sup \left\langle A_{i}, x^{\prime}\right\rangle=$ $=t_{i}^{-1} \sup \left\langle t_{i} A_{i}, x^{\prime}\right\rangle \leq t_{i}^{-1}$. Hence $h_{i}=+\infty$ implies $t_{i}=0$.

Let $b \in(0,+\infty)$ be arbitrary and set $g_{i}=h_{i}$ if h_{i} is fi-
nite and $g_{i}=b$ otherwise. Then, by the Cauchy-Schwarz' inequality,

$$
\begin{aligned}
& \left(\Sigma_{+} t_{i} g_{i}^{-1}+\sum_{0} t_{i} a^{-1}\right)\left(\sum_{+} t_{i} g_{i}+\sum_{0} t_{i} a\right) \geq \\
& \geq\left(\sum_{+} t_{i} g_{i}^{-1} g_{i}+\sum_{0} t_{i} a_{i}^{-1} a\right)^{2}=\left(\sum_{i=1}^{n} t_{i}\right)^{2}=1
\end{aligned}
$$

Letting $b \rightarrow+\infty$, we see that
$\left(\Sigma_{i}+t_{i} h_{i}^{-1}+\Sigma_{0} t_{i} a^{-1}\right)\left(\Sigma_{i} t_{i} h_{i}+\Sigma_{0} t_{i} a\right) \geq 1$,
if we agree that $t_{i} h_{i}=0$ whenever $h_{1}=+\infty$ (and, consequently, $t_{i}=0$). From this and (3) it follows that
(4) $\left(\sum_{+}^{1} t_{i} h_{i}+\sum_{0} t_{i} a\right)^{-1} x^{\prime} \in \sum_{i=1}^{n} t_{i} A_{i}^{0}$.

It is easy to see that

$$
\begin{aligned}
\sum_{+} t_{i} h_{i} & =\sum_{+} t_{i} h_{i}+\sum_{0} t_{i} h_{i}=\sup \left\langle\sum_{i=1}^{n} t_{i} A_{i}, x^{\prime}\right\rangle \leqslant \\
& \leqslant 1
\end{aligned}
$$

so that $\sum_{+} t_{i} h_{i}+\sum_{0} t_{i} a \leq 1+$ a. Hence, by (4), $(1+a)^{-1} x^{\prime} \in \sum_{i=1}^{n} t_{i} A_{i}^{0}$, 1.e., $x^{\prime} \in(1+a) \sum_{i=1}^{n} t_{i} A_{i}^{0}$ for each $a>0$. By lemma $1,(i i i), x^{\prime} \in\left(\sum_{i=1}^{n} t_{i} A_{i}^{0}\right)$.

The proof is completed.
Lemma 2. Let $0<t<1$. Then the following definition (by induction) of two sequences $\left\{u_{k}\right\}_{k=0}^{\infty}$ and $\left\{\nabla_{k}\right\}_{k=0}^{\infty}$ is correct:

$$
u_{0}=t, \quad v_{0}=1-t
$$

(5)

$$
u_{k+1}=\frac{u_{0}}{1-\nabla_{0} \nabla_{k}} \quad v_{k+1}=\frac{\nabla_{0}}{1-u_{0} u_{k}}
$$

Moreover, both sequences lie in (0,1), strictly increase and converge to one.

Proof. We shall prove, by induction, the following as-
sertion:
($\left.6_{n}\right\} \quad\left\{u_{k}\right\}_{k=0}^{n},\left\{\nabla_{k}\right\}_{k=0}^{n}$ are well defined and strictly increasing sequences contained in (0,1).

$$
\left(6_{1}\right) \text { is true, be cause } 1>1-u_{0}^{2}>0,1>1-\nabla_{0}^{2}>0 \text {, so }
$$

that

$$
1>u_{1}=\frac{u_{0}}{1-v_{0} \nabla_{0}}>u_{0}, \quad 1>v_{1}=\frac{\nabla_{0}}{1-u_{0} u_{0}}>v_{0} .
$$

Suppose that $\left(\sigma_{n}\right)$ is true for some $n=m \geq 1$. Then we have

$$
u_{m+1}-u_{m}=\frac{u_{0} \nabla_{0}\left(v_{m}-\nabla_{m-1}\right)}{\left(1-\nabla_{0} v_{m}\right)\left(1-\nabla_{0} \nabla_{m-1}\right.}
$$

As $1>\nabla_{m}>\nabla_{m-1}>0$ and $u_{m}>0$ (by the inductive hypothesis), we have $1>1-\nabla_{0} \nabla_{m}>0,1>1-\nabla_{0} \nabla_{m-1}>0$ and, consequently, $u_{m+1}>u_{m}$. The inequality $u_{m+1}<1$ follows from

$$
u_{m+1}=\frac{u_{0}}{1-\nabla_{0} \nabla_{m}}=\frac{1-\nabla_{0}}{1-\nabla_{0} \nabla_{m}}<\frac{1-\nabla_{0} \nabla_{m}}{1-\nabla_{0} \nabla_{m}}=1 .
$$

Similarly $\nabla_{m}<\nabla_{m+1}<1$. Hence $\left(6_{n}\right)$ holds for each $n_{\text {. }}$
Let $u=\lim u_{k}, v=\lim \nabla_{k}$. From (5) it follows that

$$
u=\frac{u_{0}}{1-\nabla_{0} v} \text { and } v=\frac{v_{0}}{1-u_{0} u}
$$

leading to the following equation for u :

$$
u_{0} u^{2}-\left(1+u_{0}^{2}-v_{0}^{2}\right) u+u_{0}=0 .
$$

As $1+u_{0}^{2}-\nabla_{0}^{2}=1+u_{0}-\nabla_{0}=2 u_{0}$, the last equation is of the form

$$
u_{0} u^{2}-2 u_{0} u+u_{0}=u_{0}(u-1)^{2}=0
$$

This equation has the unique solution $u=1$. Similarly $v=1$.
Lemman. Let X be a separated locally convex space and A, B, C three nonempty subsets of X. If C absorbs A and $A * C=$
$\sim A+B$, then cocl (C) $\supset B$.
Proof. We may suppose that X is a real locally convex space. Let us suppose that there is a point x in B which is not in cocl (C). Then there exists x^{\prime} in X^{\prime} such that $\left.\left\langle x, x^{\prime}\right\rangle\right\rangle \sup \left\langle C, x^{\prime}\right\rangle$. As C absorbs A, the number sup $\left\langle A, x^{\prime}\right\rangle$ is finite. Then $\sup \langle A+C, x\rangle=\sup \left\langle A, x^{\prime}\right\rangle+\sup \left\langle C, x^{\prime}\right\rangle<$ $\left\langle\sup \left\langle A, x^{\prime}\right\rangle+\left\langle x, x^{\prime}\right\rangle\left\langle\sup \left\langle A, x^{\prime}\right\rangle * \sup \left\langle B, x^{\prime}\right\rangle=\sup \langle A+B\right.\right.$, $\left.x^{\prime}\right\rangle \in \sup \left\langle A+C, x^{\prime}\right\rangle$, a contradiction.

Lemma.4. Let X be a real separated locally convex space, A, B, and C three nonempty subsets of X and $0<t<1$. If $t A+(1-t) B C C$ and $t A^{0}+(1-t) B^{0} C C^{0}$, then
$\operatorname{cocl}(A \cup\{0\})=\operatorname{cocl}(B \cup\{0\})=\operatorname{cocl}(C \cup\{0\})$.

Proof. It is clear that we may restrict ourselves to the case when all sets A, B, C are convex, closed and contain 0 , and to show that $A=B=C$.

Let $\left\{u_{k}\right\}_{k=0}^{\infty}$ and $\left\{\nabla_{\mathbf{k}}\right\}_{k=0}^{\infty}$ be the sequences from lemma 2 . We shall show, by induction, that $\left(7_{n}\right) \quad u_{n} A \subset C \subset u_{n}^{-1} A, \quad v_{n} B \subset C \subset \nabla_{n}^{-1} B$ holds for all $n \geq 0$.
$\left(7_{0}\right)$ is true because $u_{0} A, \nabla_{0} B \subset u_{0} A+\nabla_{0} B C C$ and $u_{0} A^{0}$, $\nabla_{0} B^{0} C u_{0} A^{0}+\nabla_{0} B^{0} C C^{0}$, i.e. $C=C^{00} C\left(u_{0} A^{0}\right)^{0}=u_{0}^{-1} A$, $\left(\nabla_{0} B^{0}\right)^{0}=\nabla_{0}^{-1} B$. Let $\left(7_{n}\right)$ hold for some $n=m \geq 0$. Then

$$
u_{0} A+\nabla_{0} B \subset C=\left(1-\nabla_{0} \nabla_{m}\right) C+\nabla_{0} \nabla_{m} C \subset\left(1-\nabla_{0} \nabla_{m}\right) C+\nabla_{0} B
$$

so that, by lemma 3; $u_{0} A \subset\left(1-\nabla_{0} \nabla_{m}\right) C$, i.e. $u_{m+1} A C C$. Similarly $\nabla_{m+1} B C C$. The other two inclusions in $\left(7_{m+1}\right)$ follow in the same manner by considering the polar sets to A, B, and C. Hence (7_{n}) holds for all $n \geq 0$.

As $u_{n} x \in C$ for each $n \geq 0$ and $x \in A$, and $u_{n} \longrightarrow 1$, we have
that $A \subset C$. Similarly one sees that $C \subset A$ and $B \subset C \subset B$.
Theorem 2. Let the hypotheses of Theorem 1 be satisfied. If X is locally convex and $\left(\sum_{i=1}^{n} t_{i} A_{i}\right)^{0}=\left(\sum_{i=1}^{n} t_{i} A_{i}^{0}\right)_{*}$, then $\operatorname{cocl}\left(A_{1} \cup\{0\}\right)=\operatorname{cocl}\left(A_{j} \cup\{0\}\right)$ for all i, jwith $t_{i} t_{j}>0$ 。

Proof. From lemma $1,(v)$ it follows that $\left(\sum_{i=1}^{n} t_{i} A_{i}^{0}\right)_{k}=$ $=\operatorname{cl}\left(\sum_{i=1}^{n} t_{i} A_{i}^{0}\right)$. It is clear that we may restrict ourselves to the case when $n>1$, all A_{i} 's are convex, closed and com$\operatorname{tain} 0$, and all $t_{i} ' s$ are positive. We have to show that $A_{1}=$ $=\ldots=A_{n}$.

Set $t=t_{1}, A=A_{1}, B=c l\left(\sum \cdot{ }_{i=2}^{n} t_{i}\left(1-t_{1}\right)^{-1} A_{i}\right)$ and $c=\left(\sum_{i=1}^{n} t_{i} A_{i}^{0}\right)^{0}$. Then

$$
t A+(1-t) B \subset c l\left(\sum_{i=1}^{n} t_{i} A_{i}\right) c c
$$

because $\left(\sum_{i=1}^{n} t_{i} A_{i}\right)^{0}=\left(\operatorname{cl}\left(\sum_{i=1}^{n} t_{i} A_{i}^{0}\right)\right)^{00}=c^{0}$. As $B^{0} c$ $c\left(\sum_{i=2}^{n} t_{i}\left(1-t_{1}\right)^{-1} A_{i}^{0}\right)_{*}$ (by Theorem 1), we have that $t A^{0}+(1-t) B^{0} C t_{1} A_{i}^{0}+\left(\sum_{i=2}^{n} t_{i} A_{i}^{0}\right)_{*} \subset\left(\sum_{i=1}^{n} t_{i} A_{i}^{0}\right)_{*}=$ $=\operatorname{cl}\left(\sum_{i=1}^{n} t_{i} A_{i}^{0}\right)=\left(\operatorname{cl}\left(\sum_{i=1}^{n} t_{i} A_{i}^{0}\right)\right) \quad=c^{0}$ (we have used that $M_{*}+N_{*} \subset(M+N)_{*}$ which is true for any two subsets M, N of a linear space). Hence we conclude that $A_{1}=A=B=$ $=C$, by lemma 4. By the same reasons one sees that also $A_{2}=$ $=\ldots=A_{n}=C$.

The proof is completed.

Remerke We hope that our Theorem will find applications in convex analysis.

An easy application is as follows. Let the hypotheses of

Theorem 1 be satisfled and let p be a K-subadditive functional on $X^{\prime}(K \geq 0 ; p(u+v) \leqslant K p(u)+K p(v)$ for all u, v in $\left.X^{\prime}\right)$. Then $\sup p\left(\left(\sum_{i=1}^{n} t_{i} A_{i}\right)^{0}\right) \leq c(K, n)\left(\sum_{i=1}^{n} \sup p\left(t_{i} A_{i}^{0}\right)\right)$, $\sup p\left(\left(\sum_{i=1}^{n} t_{i} A_{i}\right)^{0}\right) \leq K^{m}\left(\sum_{i=1}^{n} \sup p\left(t_{i} A_{i}^{0}\right)+\left(2^{m}-n\right) p(0)\right)$, where $c(K, n)=\frac{K\left(2 K^{n-1}-K^{n-2}-1\right)}{K-1}(c(K, n)=1$ if $K=1)$ and m is the first integer such that $n \leqslant 2^{m}$, provided p is continuous on straight lines.

```
References
```

[1] FEDOTOV V.P.: An analogon of an inequality between arithmetic and harmonic means for convex sets, Optimizacija 12(1973), 116-121.

Matematicky ustav

Karlova universita
Sokolovská 83, 18600 Praha 8
Ceskoslovensko
(Oblatum 16.2. 1977)

