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BVERY FINITE LATTICE CAN BE EMBEDDED IN THE LATTICE OF ALL
EQUIVALENCES OVER A FINITE SET

(Preliminary communication)

Pavel PUDLAK, Ji¥{ TOMA, Praha

Ahﬁuﬂ= The theorem given in the title answers in the
affirmative a question raised in Ph.M. Whitman (2]. The proof

of the theorem is based on graph-theoretical and combinatori-
al techniques.

Kgy words: Finite lattice, equivalence lattice, regraph
power. .

AMS: 06A20, 05C99 Ref. Z.: 2.724.8

Here we present a sketch of proof of the theorem in the
title. It was first conjectured by Whitman in [2]1.

Throughout the paper all structures are finite.

Let L, K be two lattices. A mapping ¢ : L —>K is cal~-
led join-homomorphism, if @ (xvy) = ¢ (x) v ¢ (y) and meet=-
homomorphism, 1f @ (xAy) = @(x) A @ (y) for all x,yecL.

A lattice L is called embeddable, if there exists an em-
bedding (that is en injective Jjoin and meet-homomorphism)

@ L-—,lq(A) of L in the lattice of all equivalence over a
set A,

The least element of L is denoted by OL'

Let L be a lattice, u,ve L, If uev, then we define a
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set L, . = {xelL,v&x or u$x$ and a mapping u.yt L
1 H

™ Ly,v

G‘u,v(x) = xvv if u4x,
gu,v(x) =x if u4x.
Lempa 1:

a) Lu,v with the ordering induced by L is a lattice
b) e‘u'v is a surjective join-homomorphism
¢) every join-homomorphism ¢ : L —> K such that

@ (u) = ¢ (v), can be decomposed in the Cu,v¢ L—L,

and a join-homomorphism ¥ : Lu,v -—>» K.

The following theorem uses the fact that for every lat-
tice L there exist a Boolean lattice B and a surjective join—-

homomorphism & : B —>L,

Theorem 1: Let &£ be a class of Lattices closed under
isomorphisms and
1) every Boolean lattice belongs to &£
2) Lu,v € whenever Le & , u,vel and u<v
Then &£ is the class of all lattices.

It is known that every Boolean lattice is embeddablee.
By Theorem 1 it remains only to investigate the operation
L+ L\x,v in the class of embedc.lable lattices. To this erd
the following lemma‘ is a useful tool.

Lempg 2: Let L, K be lattices, u,ve L, u<v and @ :
¢ L—> K a mapping with properties
i) % : L— K is a join-homomorphism
2) the restriction of ¢ to Ly,v? Pu,v’ Ly,y—>K is en in-
Jjective meet-homomorphism
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3) @)
Then YSu, v’ L“’v—-r K is a lattice embedding.

@lv)

To find a mapping ¢: L — E,q(\A) with the properties
l. - 3, geveral types of constructions are used.

1. Gpoup construction. Let B be the set of all permu-
tations of A. We define a mapping <&@ l,q(A)—r Eq(B) by
(or,p) € @ (x) ife (or ;o'l(a),a)e x for all a€ A. Then ¢
is a lattice embedding. This construction was known already
to Birkhoff [11.

2. Regraph construction. By a regraph valued by A we
mean a triple G = (G,h,0), where G is a non-empty set, R is
a symmetric antireflexive relation and ¢o: R —> A is a mapping.
For a given mapping @ : L —)Eq(A) we define a new mapping
¥ : L—> B (AxG) called G-power of ¢ as follows: V¥ (x)
is the least equivalence containing the relations
s = 4[ (o(g,h),g), (o(h,gl,h)]) ; (g,h)e R} ed
S, =4[ (a,8),(h,g)] ; g€G and (a,b) & @ (x)3
If ¢ is a Join-homomorphism, then any its G -power is a
Join-homomorphis, too. Under certain conditions on the couple
(4 »y ¢ we can prove that the G -power of an injective meet-
homomorphism ¢ 1s also an injective meet~homomorphism.

3. Perfect regrgph construction. A regraph & = (G,h,0)
valued by A is called symmetric, if the valuation ¢: R—> R 1is
symmetric, i.e. d(g,h) = oth,g) for every (g,h)e R. In a sym-
metric regraph (G,h,of) an R-chain g = Boreec 28 = h is called
d-shortest path, if { olg,e), d(gl'sz)""’d(gk-l'gk) $ s
(4 d(ho,hl),...,d(hk_l,hk)i for every R-chain g = hg,hy,...

.l.’hn = h.
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A regraph (G,h,0) is called perfect, if it is symmetric
and for every pair of distinct elements g,h€G there exists
an o-shortest path g = g, y...,8, = h. If G = (G,h,0) 15 a
perfect regraph, then the G -power of every embedding @ @
: L—-»Eq(A) is an embedding, too.

Exgmple. Cyclic two-valued regraph consists of a cycle
of an even length =4 and a symmetric two-valued valuation
o, which assigns different values to any two incident edgese.
(We consider (g,h)e R and (h,g) € R being a single unoriented
edge.) Cyclic two-valued regraphs are perfect.

4. Product of regraphs. If G, = (Gy,hy,03) are re-
graphs valued by A; for 4 =1,...,n, then G = (G,h,e¢) Is @
product of Gi's it
1) G = G GyX oo XGp
2) [(gl,...,gn),(hl,...,hn)]€ R iff there exists je {l,...
«eeyk§ such that (3J’h,j)é RJ end g; = hy for all i j.

3) In this case o*[(gl,...,gn),(hl,...,hn)] = dJ(gJ,hJ)
The fact that product of perfect regraphs is perfect, is ea-
sy but of great importance.

Using constructions just listed we can construct new em—-
beddings of a given embeddable lattice, satisfying some spe-
eciagl eonditions.

Lempa 3: If L is an embeddable lattice, ué L, u%0y,
then there exigt an embedding ¢ : L —>» Eq(A) and a set ¥SA
with properties:

1) for every a€ & there are two different x,y&V such that
{x,a) € ¢ (u) end (y,a) & @ (u).
2) For every two different x,yeV, if (x,y) € < (v) then
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To find an embedding with the property l., the group construc-
tion can be used only. In the case of 2. a product of cyclic
two-valued regraphs and a non trivial combinatorial lemma

are needed.

The proof is finished by

.W: If L is embeddable, then so is Lu,v for u,
veL u<v. In the case u = OL I‘\:,v is trivially embeddable
being a sublattice of an embeddable lattice. So we can assume
0;% u. Now we take an embedding ¢ : L—> lq(A) given by Llem—
ma 3. Further, we construct a new embedding ¥ : L —-blq(AxG)
- the @ -power of ¢ , where & = (G,h,0) is a product of
cyclic two-valued regraphs. Then the valuation o’ is slightly
changed to o¥ so that yv*: L — Iq(AxG) - the (G,R,00*) -
Fower of @ = identifies u and v. In this step the old asser-
tion about the existence of an Euler cycle in an unoriented
graph is used. Finally, we prove that the restriction "f"*u,vg
t Ly o> BfAxG) of v* 18 an injective meet-homomorphism.
Here we need the theory of non-perfect regraphs. Since the
mapping 1}'* is a join-homomorphism being a regraph-pover of
Join=homomorphism ¥ , it satisfies all assumptions of Lemma
2 and so ¥%, , 15 an embedding of L, , in B (&xG).

The result was obtained at the end of 1976. The comple-
te proof was submitted for publication to Algebra Universalis.
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