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OOMMENTATIONES MATHEMATICAE UNIVERSITATIS CABDLINAB 

18,2 C1977) 

EVERY .FINITE LATTICE CAN BE EMBEDDED IN THE LATTICE OF ALL 

EQUIVALENCES OVER A .FINITE SET 

(Preliminary communication) 

Pavel FUDLXK, Ji*i TulIA, Prahcr 

Abstract; The theorem given in the title answers in the 
affirmative a question raised in Ph.M. Hhitman C2J. The proof 
of the theorem is based on graph-theoretical and combinatori
al techniques. 

Key words: Finite lattice, equivalence lattice, regraph 
power. 

AMS: 06A20, 05C99 Ref. 2.: 2.724.8 

Here we present a sketch of proof of the theorem in the 

t i t l e . It was f irst conjectured by Whitman in 121* 

Throughout the paper a l l structures are f in i t e . 

Let Lf K be two la t t i ces . A mapping 9 : L —*K i s cal 

led join-homomorphism, i f ^Cxvy) a <pix) v <p (y) and meet-

hoaomorphl8mf i f 9 (XA y) * <p(x) A 9 (y) for a l l x fyeL* 

A latt ice L i s called embeddable, i f there exists an em

bedding (that i s an injective join and meet-homomorphism) 

9 : L—»! (k) of L in the lat t ice of al l equivalence over a 

set A. 

The least element of L i s denoted by 0^. 

Let L be a la t t i ce , u,v€ L. If u6 v, then we define a 
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a e t L„ „ » -ix€L fv-£x or u.#x? and a mapping 6V „: 
» * • V U j Y 

0*u v ( x ) = XVV І f U.6X, 

ďu v^x) = x i f u £ x . 

Lgf 

a) L^ v with the ordering induced by L is a la t t ice 

b) 6"u v i s a surjective join-homomorphism 

c) every join-homomorphism 9 : L —* K such that 

<£ (u) » <pCv)f can be decomposed in the 6*u v : L—• L̂  v 

and a join-homomorphism f : L v —* K. 

The following theorem uses the fact that for every la t 

tice L there exist a BooXean latt ice B and a surjective join-

homomorphism & : B —>• L. 

Theorem X: Let X be a cXass of latt ices closed under 

isomorphisms and 

X) every Boolean latt ice belongs to aC 

2} Lu v 6 *C whenever L € «C f uf v € L and u< v! 

Then it i s the clasa of aXX la t t i ces . 

It i s known that every Boolean latt ice is embeddable. 

By Theorem 1 i t remains only to investigate the operation 

L I—> 1^ v in the class of embeddable la t t ices . To this end 

the following lemma i s a useful tool. 

LejsaaJ?: Let Lf K be Xattices, u,ve L, u-c'v and <p : 

: L—> K a mapping with properties 

i ) <f : L—> K is a join-homomorphism 

2} the restriction of <f t o Hi v' ^u v ! Lu v—* K i s a n i n~ 
jective meet-homomorphism 

4X0 



3) 9>(u) -* Cfdv) 

Then <apu v : 1^ v~--> K i s a l a t t i c e embedding. 

To find a mapping y : L —> E vA) with the propert ies 

1 . - 3 . several types of constructions are used. 

1. Group construction. Let B be the se t of a l l permu

t a t i o n s of A. We define a mapping <f : l q ( A ) — > I (B) by 

Cjtf fp) 6 <f(x) i f f {& q> ( a ) f a ) e x for a l l a c A. Then 9? 

i s a l a t t i c e embedding. This construction was known already 

to Birkhoff L13 • 

2 . Regraph construetlon> By a regraph valued by A wa 

mean a t r i p l e © =* (Gfhfor)f where G i s a non-empty s e t , R i s 

a symmetric ant i re f l ex ive r e l a t i o n and o*: R —•** A i s a mapping. 

For a given mapping <q : L—*B_(A) we define a new mapping 

f : L—* 1 (AxG) ca l led flj-power of <p as f o l l ows : y ( x ) 

i s the l eas t equivalence containing the r e l a t i o n s 

S » it 4 d ( g f h ) , g ) f (cr(h fg) fh)3 5 ( g , h ) c R ? and 

S^ =» 4 t Ca,g), ( h f g ) ] ; g c G and (a ,b) c <f (x) ? 

I f y i s a join-homomorphismf then any i t s <& -power i s a 

ioin-homomorphisf t o o . Under certa in conditions on the couple 

(& f <p we can prove that the & -power of an in jec t ive meet-

homomorphlsm <p i s a l so an in jec t ive meet-homomorphism. 

3* f flTft (ft r W 9 P h const;rm?UPfl» A regraph <& * (Gflifo*> 

valued by A i s ca l led symmetric, i f the valuation of: R—> A i s 

symmetric, i . e . o*(gfh) » cHh,g) for every ( g f h ) e R . In a sym

metric regraph tefhfo*) an R-chain g * g0%***%g^ = h i s cal led 

o*-shortest path, i f { cr tg^g^ f ertg^fg^.) f . . . f cf(g k ^ l f g k ) i £ 

£ i 0*(h o > h 1 ) , . . . fo*(hjc-1,hjc)} for every R-chain g =* h o f h i f . . # 

. * • , h n
 s h. 
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A regraph (G,h,o") i s ca l l ed per fec t , i f i t i s symmetric 

and for every pair of d i s t i n c t elements g , h e G there e x i s t s 

an tf-shortest path g = g o f . . . f g k =- h. I f <E = (Gfhf<r) i s a 

perfect regraph, then the <& -power of every embedding 9 2 

: L—^1 (A) i s an embedding, t o o . 

Example• Cyclic two-valued regraph cons is ts of a cycle 

of an even length > 4 and a symmetric two-valued valuation 

C, which ass igns d i f ferent values t o any two incident edges* 

(We consider ( g , h ) € R and ( h , g ) c R being a s ing le unoriented 

edge . ) Cyclic two-valued regraphs are perfect . 

4 . PgQ<Jta<rt Of reflraPha* It G± = (G i >h 1 ,o' i) are r e -

graphs valued by A^ for i = l 9 . . . 9 n 9 then Cr =- (G,h9or) I s & 

product of C^'s i f 

1) G » GjxGz* • • • * G
n 

2) [(g., , . . . f g n ) , ( h l f . . . ,hn ) 3 € R i f f there e x i s t s j e • £ ! , . . . 

. . . , k ? s u c h that (g.,,h.j)€ R.. and g^ = h^ for a l l i4-»:j« 

3) In t h i s case a* CCg^,.. . f g n ) f ( h ^ , . . . f h n ) 3 = ^{gybA 

The fact that product of perfect regraphs i s per fec t , i s ea

sy but of great importance. 

Using constructions just l i s t e d we can construct new em-

beddings of a given embeddable l a t t i c e , sa t i s fy ing some spe 

c i a l cond i t ions . 

Lt->m|nfl j ; I f L i s an embeddable l a t t i c e , ue L, u + O,, 

then there e x i s t an embedding <jp : L —+ -£q(A) and a se t T£A 

with propert ies : 

1) for every a€ A there are two d i f f erent x ,yf iV such that 

(x ,a ) € .9 (u) and (y f a) e 9 (u)« 

2) For every two d i f ferent x , y e V , i f (x ,y) e 9>(v) then 

- 412 -



V 2 U . 

fb find an embedding with the property 1 . , the group construc

tion can be used only. In the case of 2. a product of cyclic 

two-valued regraphs and a non tr iv ial combinatorial lemma 

are needed. 

The proof i s finished by 

Theorem 2: If L i s embeddable, then so i s Lu ^ for u, 

veL t u<v# In the case u =* 0L 1^ v i s t r iv ia l ly embeddable 

being a sublattice of an embeddable lattice* So we can assume 

0-^4-u. Now we take an embedding q> : L—* 1 (A) given by Lem

ma 3 . .Further, we construct a new embedding y : L — y | (AxG) 

- the (S -power of <p , where <B » (Gfhfo") i s a product of 

cyclic two-valued regraphs* Then the valuation & i s slightly 

changed to c * ao that y* i L—>1 (A?cG) - the (G^o**) -

power of op - identifies u and v.. In this step the old assan>-* 

tion about the existence of an Euler cycle in a nun oriented 

graph i s used. Finally, we prove that the restriction ^^ v
s 

t 1^ v—> I (AxG) of y * i s an infective meet-homomorphiam. 

Here we need the theory of non-perfect regrapha# Since the 

mapping f* i s a join-homomorphism being a regraph-power of 

join-homomorphlsm y 9 i t sat is f ies a l l assumptions of Lemma 

2 and so y \ v i s an embedding of Lu v in B CA*G)# 

The result was obtained at the end of 1976* The comple

te proof wa» aubmitted for publication to Algebra Universalis. 
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