Commentationes Mathematicae Universitatis Caroline

Pavel Pudlák; Jiř̌í Tůma
Every finite lattice can be embedded in the lattice of all equivalences over a finite set (Preliminary communication)

Commentationes Mathematicae Universitatis Carolinae, Vol. 18 (1977), No. 2, 409--414

Persistent URL: http://dml.cz/dmlcz/105785

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

CDMEATATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

$$
18,2 \text { (1977) }
$$

bVERY FINTTE Lattice CAN BE EMBEDDED IN the Lattice of all EQUIVALENGES OVER A FINITE SET (Preliminary communication) Pavel PUDLÂK, Jị̛i TƯMA, Prahe

[^0]Here we present a sketch of proof of the theorem in the title. It was first conjectured by Whitman in [2].

Throughout the paper all structures are finite.
Let L, K be two lattices. A mapping $\varphi: L \rightarrow K$ is calIed join-homomorphism, if $\varphi(x \vee y)=\varphi(x) \vee \varphi(y)$ and meethomomorphism, if $\varphi(x \wedge y)=\varphi(x) \wedge \varphi(y)$ for all $x, y \in L$.

A lattice L is called embeddable, if there exists an embedding (that is an injective join and meet-homomorphism)
$\varphi: L \rightarrow \mathbf{E}_{q}(A)$ of L in the lattice of all equivalence over a set A.

The least element of L is denoted by O_{I}.
Let L be a lattice, $u, \nabla \in L$. If $u \in v$, then we define a
set $L_{u, v}=\{x \in L, \nabla \leqslant x$ or $u \neq x\}$ and a mapping $\sigma_{u, v}: L \rightarrow$ $\rightarrow L_{u, v}$
$\sigma_{u, v}(x)=x \vee v$ if $u \leqslant x$,
$\sigma_{u, v}(x)=x$ if $u \neq x$.

Lemma_1:

a) $L_{u, v}$ with the ordering induced by L is a lattice
b) $\sigma_{u, v}$ is a surjective join-homomorphism
c) every join-homomorphism $\varphi: L \rightarrow K$ such that $\varphi(u)=\varphi(v)$, can be decomposed in the $\sigma_{u, v}: L \rightarrow L_{u, \nabla}$ and a join-homomorphism $\psi: L_{u, \nabla} \rightarrow K$.

The following theorem uses the fact that for every lattice I there exist a Boolean lattice B and a surjective joinhomomorphism $\sigma: B \longrightarrow$.

Theorem 1: Let \mathscr{L} be a class of lattices closed under isomorphisms and

1) every Boolean lattice belongs to \mathscr{L}
2) $L_{u, v} \in \mathscr{L}$ whenever $L \in \mathscr{L}, u, \nabla \in L$ and $u<\nabla$ Then \mathscr{L} is the class of all lattices.

It is known that every Boolean lattice is embeddable. By Theorem 1 it remains only to investigate the operation $L \longmapsto L_{u, v}$ in the class of embeddable lattices. To this end the following lemma is a useful tool.

Lemma 2: Let L, K be lattices, $u, v \in L, u<v$ and φ : $: L \longrightarrow K$ a mapping with properties
i) $\quad \varphi: L \rightarrow K$ is a join-homomorphism
2) the restriction of φ to $L_{u, v}, \varphi_{u, v}: L_{u, \nabla} \rightarrow K$ is an injective meet-homomorphism
3) $\varphi(u)=\varphi(v)$

Then $\varphi_{u, \nabla}: L_{u, \nabla} \rightarrow K$ is a lattice embedding.
To find a mapping $\varphi: L \rightarrow E_{q}(A)$ with the properties

1. - 3. several types of constructions are used.
1. Group construction. Let B be the set of all permutations of A. We define a mapping $\varphi: \mathbf{E}_{q}(A) \longrightarrow \mathbf{E}_{q}(B)$ by $(\pi, \rho) \in \varphi(x)$ iff $\left(\pi \rho^{-1}(a), a\right) \in x$ for all $a \in A$. Then φ is a lattice embedding. This construction was known already to Birkhoff [1].
2. Regraph construction. By a regraph valued by we mean a triple $\mathbb{G}=(G, h, \sigma)$, where G is a non-empty set, R is a symmetric antireflexive relation and $\sigma: R \rightarrow \mathbb{A}$ is a mapping. For a given mapping $\varphi: L \longrightarrow E_{q}(A)$ we define a new mapping $\psi: L \rightarrow \mathbb{B}_{q}(A \times G)$ called \mathbb{G}-power of φ as follows: $\psi(x)$ is the least equivalence containing the relations $S=\{[(\sigma(g, h), g),(\sigma(h, g), h)] ;(g, h) \in \mathbb{R}\}$ and $S_{x}=\{[(a, g),(h, g)] ; g \in G$ and $(a, b) \in \varphi(x)\}$
If φ is a join-homomorphism, then any its G-power is a join-homomorphis, too. Under certain conditions on the couple \mathbb{G}, φ we can prove that the \mathbb{G}-power of an injective meethomomorphism \wp is also an injective meet-homomorphism.
3. Perfect regraph construction. A regraph $\mathbb{G}=(G, h, \sigma)$ valued by A is called symmetric, if the valuation $d: R \rightarrow N$ is symmetric, i.e. $\sigma(g, h)=\sigma(h, g)$ for every $(g, h) \in R$. In a symmetric regraph (G, h, σ) an R-chain $g=g_{0}, \ldots, g_{k}=h$ is called σ-shortest path, if $\left\{\sigma\left(g_{0}, g_{1}\right), \sigma\left(g_{1}, g_{2}\right), \ldots, \sigma\left(g_{k-1}, g_{k}\right)\right\} \subseteq$ £\{ $\left.\sigma\left(h_{0}, h_{1}\right), \ldots, o\left(h_{k-1}, h_{k}\right)\right\}$ for every R-chain $g=h_{0}, h_{I}, \ldots$ $\ldots, h_{n}=h_{\text {. }}$

A regraph (G, h, σ) is called perfect, if it is symmetric and for every pair of distinct elements $g, h \in G$ there exists an σ-shortest path $g=g_{0}, \ldots, g_{k}=h$. If $\mathbb{G}=(G, h, \sigma)$ is a perfect regraph, then the \mathbb{G}-power of every embedding φ : $: L \longrightarrow \mathbb{F}_{q}(A)$ is an embedding, too.

Example. Cyclic twowalued regraph consists of a cycle of an even length ≥ 4 and a symmetric two-valued valuation σ, which assigns different values to any two incident edges. (He consider (g, h) $\in R$ and $(h, g) \in R$ being a single unoriented edge.) Cyclic two-valuea regraphs are perfect.
4. Product of regraphs. If $G_{i}=\left(G_{i}, h_{i}, \sigma_{i}\right)$ are regraphs valued by A_{i} for $i=1, \ldots, n$, then $\mathbb{G}=(G, h, \sigma)$ is a product of \mathbb{G}_{i} 's if

1) $G=G_{1} \times G_{2} \times \ldots \times G_{n}$
2) $\left[\left(g_{1}, \ldots, g_{n}\right),\left(h_{1}, \ldots, h_{n}\right)\right] \in R$ iff there exists $j \in\{1, \ldots$ $\ldots, k\}$ such that $\left(g_{j}, h_{j}\right) \in R_{j}$ and $g_{i}=h_{i}$ for all i中j. 3) In this case $\sigma\left[\left(g_{1}, \ldots, g_{n}\right),\left(h_{1}, \ldots, h_{n}\right)\right]=\sigma_{j}\left(g_{j}, h_{j}\right)$ The fact that product of perfect regraphs is perfect, is easy but of great ileportance.

Using constructions just listed we can construct new embeddings of a given embeddable lattice, satisfying some special conditions.

Lemma 3: If L is an embeddable lattice, $u \in L, u \neq O_{L}$, then there exist an embedding $\varphi: L \rightarrow \mathbf{E}_{\mathrm{q}}(\mathrm{A})$ and a set $\mathrm{V} \subseteq A$ with properties:

1) for every $a \in A$ there are two different $x, y \in V$ such that $(x, a) \in \varphi(u)$ and $(y, a) \in \varphi(u)$.
2) For every two different $x, y \in V$, if $(x, y) \in \varphi(v)$ then
v \geq u.
To find an embedding with the property l., the group construction can be used only. In the case of 2. a product of cyclic two-valued regraphs and a non trivial combinatorial lemma are needed.

The proof is finished by

Theorem 2: If L is embediable, then $s o$ is $L_{u, v}$ for $u_{;}$ $\nabla \in L, u<\nabla$. In the case $u=O_{L} \quad L_{u, v}$ is trivially embeddable being a sublattice of an embeddable lattice. So we can assume $\mathbf{0}_{L} \neq \mathrm{u}$. Now we take an embedding $\varphi: L \rightarrow \mathbf{F}_{\mathrm{q}}(\mathrm{A})$ given by Lemma 3. Further, we construct a new embedding $\psi: L \rightarrow \mathbf{E}_{q}(K \times G)$ - the \mathbb{G}-power of φ, wher $\mathbb{G}=(G, h, \sigma)$ is a product of cyclic two valued regraphs. Then the valuation σ is silightly changed to σ^{*} so that $\boldsymbol{F}^{*}: I \rightarrow E_{q}(A \times G)$ - the $(G, R, \sigma *)$ fower of φ - identifies u and ∇. In this step the old assar tion about the existence of an Euler cycle in an unoriented graph is used. Finally, we prove that the restriction $\boldsymbol{\psi}^{*}{ }_{u, \nabla^{*}}$ $: H_{u, v} \rightarrow E_{q}(\mathbb{A} \times G)$ of ψ^{*} is an injective meet-homomorphism. Here we need the theory of non-perfect regraphs. Since the mapping ψ^{*} is a join-homomorphism being a regraph-power of join-homomorphism φ, it satisfies all assumptions of Lemma 2 and so $\Psi^{*} u_{,}$, is an embedding of $L_{u, \nabla}$ in $E_{q}(A \times G)$.

The result was obtained at the end of 1976. The complete proof was aubmitted for publication to Algebra Universalis.

References

[1] Garrett BIRKHOFF: On the Structures of Abstract Algebras, Proc. Cambridge Philosophical Society 31(1935), p. 433

\title{

[2] Philip M. WHITMAN: Latticen, Equivalence Relations, and Subgroups, Bull. Amer. Math. Soc. 52(1946), p. 507
 | Matematický ustap | Katedra matematiky |
| :---: | :---: |
| C S A V | Fakulta nuklear. Pyziky |
| Kitná 28, Praha 1 | Horské 2, Praha 2 |
| Ceskoslovensko | Ceakos lovenako |

(Oblatum 18.3. 1977)

[^0]: Abstract: The theorem given in the title answers in the affirmative a question raised in Ph. M. Whitman [2]. The proof of the theorem is based on graph-theoretical and combinatorial techniques.

 Key mords: Finite lattice, equivalence lattice, regraph power.

 AMS: 06A20, 05C99
 Ref. Ž.: 2.724.8

