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ON CONGRUENCES OF THE LATTICES SUB (L)

Ivan VLEEK, Praha

e
characterize the lattice Sub,(L). In this paper some necegsa-
ry conditions for L = Sub (L") for a finite lattice L are gi~-
ven.

,

Abstract: G. Gratzer suggested (see 1 , problem 7) to
¢
)
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1. Preliminsries. Let L be a lattice. Sub (L) denotes
the lattice of all sublattices of L, ordered by the set inclu~
sion. C(L) denotes the lattice of all congruences on L; € de~-
notes the smallest element of C(L) (identity on L).

The set consisting of elements a,b,... is denoted by
(aybyeee)e If M is a set, we sometimes write,(M) instead of
M. The symbols M, ¥ denote set intersection and union res-
pectively.

The symbols n , V denote the lattice operations of L.
For the lattice operations of Sub (L) we use symbols A,V .
By (a,b,...);, (M)y the sublattices of L generated by (a,b,...),
M are denoted.

It is well-known that Sub (L) is a complete, atomic algeb-
raic lattice having § as the smallest element and L as the
greatest one. All atoms in Sub (L) are precisely all one ele-
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ment subsets of L.

2. Copgruenges on Sub (L).

Defipition. A lattice L is called gubdirectly irreducib-
le if for any arbitrary system (@1)IEC(L) holds: /M Oy =¢€
implies that 93 = ¢ for some jeI.

Definition. Two (closed) intervals [a,bl ,[c,d] are
called tragnspogeg if a = bne¢, d = bUc or ¢ = and, b = avd.
In the first case we write La,blA”Llec¢,d], in the second ca-
se [a,bINlc,d] . It is obvious that the relations /A, ™
are transitive.

We shall use the following lemmas.

Lemma ) (see [11, p. 24). A reflexive and symmetric bi-
nary relation @ on a lattice L is a congruence relation iff
the following three properties are satisfied for all x,y,z,te€
€ L:

1) xOy iff (xny) © (xuy).

2) x&y4z,xO© y, and y © z imply that x © z.

3] x££y and x © y imply that (xut) © (yut) and
(xnt) B (ynt).

Lemmg 2. Let L be a finite lattice, © # ¢ a congru-
ence on Sub (L). Then there is an atom (a) in Sub (L), such
that (a)= 6 ().

Lemmg 3. If © 1is a congruence on a lattice L, Lp,ql,
Cr,s]1 are transposes, then p © q implies r O s.

Definitjon. An element of a poset P is called fylly com-
parable (f.c. element) if it is comparable with any element
of P. A set consisting of f.c. elements is called f£,¢, get.
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Remark. If IS€L is an f.c. set, xe Sub (L), then
(xe@ I) = (xvI)eSub (L),

Definjtion. Let I be an f.c. subset of a lattice L.

Let 't‘I denote the binary relation on Sub (L) defined in the
following way:

for x,ye Sub (L) x qy iff there is JEI such that
(xAy)w J =xvy.

It can be easily shown that ft.'I is reflexive and symmetric.

Propogition 1. Let L be a lattice, I an f.c. subset of
L. Then <@y is a congruence relation on S b (n).

Proof. We shall verity the properties from Lemma 1.

1) Obvious.

2) x4£y<4z and let J, J'c I be such that
xwd=(xAy)w J=xvy=yad yud'=(yaz)w J'=yvz = z.
Then z = xw J W J', i.e. x ¥yz.

3) Let x,y,teSub (L), x<£y and X %1y, Then x @ J =
= (xAy)w J =xvy =y. But J is an f.c. subset (also a sub-
lattice), so that yvt = (xw J)vt = (xvd)vt =xvivd =
= (xvt)y J, thus (xvt) w1(yvt). Similarly
At = xudAat=(xAat)v (Iat) = (xatlw J’, i.e.
(yat) ’!:I(x/\t).

The proof is finished.

The most important special case in the last definition is
I = (b). We shall write in this case <, instead of % (p)e

Propogition 2. Let L be a finite lattice, beL an f.c.
element. Then the congruence <, is an atom in c(sub (L)).

Proof. By Lemma 2 any congruence © # € which is con-
tained in <., contains [f,c] for some c€L. By the defini-
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tion of 'tb we have ¢ = b, which implies that the congruen-

ce 8 c “¢y 1is necessarily such that ()= @g(0).
further, by Lemma 3 and by definition, Ty is the smal-

lest of all congruences for which (b)= ¢, so that @ = =,

Corollary 1. Let L be a finite lattice. Sub (L) is sub-
directly irreducible iff card L = 1.

Proof. Since every finite lattice L, card L2 2 has 01,
the assertion follows from the last proposition.

Now, we shall convert Proposition 2 and show that any ato-
mic congruence on Sub (L) has the form of Ty for an f.c. ele-
ment bé L.

ore o Let L be a finite lattice. Then there is one~-
to-one correspondence between f.c. elements of L and atomic
congruences on Sub (L); to an f.c. element b corresponds the
congruence Ty described aboves

Progof. Let @ + © Dbe a congruence on Sub (L). By Lem-
ma 2 there is beL such that (b)= H(@). If b is an f.c. ele-

ment, then by the proof of Proposition2 s @
are done.

and we

If b is not fully comparable, there is ce L such that
A = (b,e,bac,buc) is a four element sublattice of L. Since

(b)A(e) =0 and (b)v (c) = A we have L@,bIALc,Ad in Sub (L).
We show that (buc)= 0 (p).

Since c#buc we have (c)A (buc) = 0 and (¢)v (bue) =
= (cw (bue)) = (cw(bue)), thus [B,bucIALlc,cw (buell.
Now (b)es 8 (@ ) and [#,b1.7[c,A], hence cm A (@ ).

Since (¢)c (c e (bue)) c A and every congruence class is
a convex sublattice, we obtain
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¢c=(cw(buc)) (@) and thus, finally

(bve)= 9 (S° )e

We shall distinguish two cases.

Cagse I. If buc is an f.c. element, then the congruence
7 pye 18 an atom in C(Sub (L)), and since b#buc, it is ne-
cessarily “¥,,. S ® . The proof is in this case finished.

Case II., If buc is not comparable with de L we repeat
the previous consideration and obtain (bucud)e= 0 (@ )
If bucud is an f.c. element of L, we are finished. If not,
we continue analogously. Since L is finite, we finally obtain
an f.c. element ke L such that the atomic congruence Tg is
contained in ® - The proof is finished.

Now we can describe a certain sublattice of C(Sub (L))
by using the atoms T e

Theorem 2. Let L be a finite lattice, I the set of all
£.c. elements of L, (bj,...,by) = JEI. Then in C(Sudb (L))

v, VvV T Veeoe VU T = T
by b2 by J
Proof. We denote the congruence on the left hand side by
© . Let & be a congruence such that § 2 'z:bi for i =

> 1,25900,m. Let x Tyye Then there is J’'c J such that xXvy =
s (xAy)® J°. Suppose J'= (bkl,... by ), let ¢, * XAy and

Qefine c, = CgqV bks’ 8 = 1,24¢0.4£ .+ Then Co< €1 < ses< Cp

and (cg_jrcy) € v, € & . Thus by the transitivity of &
s

co = (xAy) § (xvy) =cy o By Lenmal x& y; thus ;@
and, consequently Tj; = © .
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Corollary 2. Let L be a finite lattice, I the set of
all f.c. elements of L, card L = n. Then C(Sub (L)) contains
as a sublattice the Boolean lattice 2% having € as the smal-
lest element and T as the greatest one.

Now, it is easy to reformulate our results @s necessary
conditions for a finite lattice L to be L = Sub (L”).

Let I denote the set of atoms of L the union of which
with eny different atom is of height 2. Let card I = n.

1) L is subdirectly reducible or card L = 2,

2) All atoms in C(L) are exactly the congruences Ty
(where be I) defined by b= O, The element b is the only ele-
ment of L identified with O by the congruence The

3) The lattice C(L) contains a Boolean lattice 2" as
its sublattice. This lattice has € as the smallest element

and T,; bel are exactly all its atoms.
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