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COMMENT ATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

18,3 (1977) 

ON CONGRUENCES OF THE LATTICES SUB (L) 

Ivan VLfiEK, Praha 

Abstract: G. Gratzer suggested (see 1 , problem 7) to 
characterize the lattice Sub,vL). In this paper some necessa
ry conditions for L = Sub (L ) for a finite lattice L are gi
ven. 

Key words: Lattices Sub (L), transposes, f.c. elements, 
atomic congruence. 

AMS: 06A20 Ref. 2.: 2.724.61 

1. Preliminaries. Let L be a lattice. Sub (L) denotes 

the lattice of all sublattices of L, ordered by the set inclu

sion. C(L) denotes the lattice of all congruences on L; e de

notes the smallest element of C(L) (identity on L)» 

The set consisting of elements a,b,... is denoted by 

(afb,...). If M is a set, we sometimes write,(M) instead of 

M. The symbols f?> ? ^ denote set intersection and union res

pectively. 

The symbols n 7 u denote the lattice operations of L. 

For the lattice operations of Sub (L) we use symbols A , v . 

By (a,b,...)j, (M)T the sublattices of L generated by (a,b,...), 

M are denoted. 

It is well-known that Sub (L) is a complete, atomic algeb

raic lattice having A as the smallest element and L as the 

greatest one. All atoms in Sub (L) are precisely all one ele-
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ment subsets of L. 

2 . Congruences on Sub (L). 

Def ini t ion. A l a t t i c e L i s cal led subd irect lv irreducib 

le, i f for any arb itrary system ( © i ) j £ C ( L ) holds: rfh 6 i =- 6 

implies that Q* = €> for some :j€l. 

Def ini t ion. Two (closed) intervals La,b3 , £ c , d l are 

cal led transposes i f a - b n c , d = b u c or c = a n d , b - a u d . 

In the f i ra t case we write l a , b "1,^ t c ,d 3 , in the second ca

se C ajbl^-v C c,d 1 . I t i s obvious that the re la t ions / , "-* 

are t r a n s i t i v e . 

We 3hal l use the following lemmas. 

Lemma 1 (see C l j , p . 24) . A ref lex ive and symmetric b i 

nary re la t ion 0 on a l a t t i c e L i s a congruence re la t ion i f f 

the following three propert ies are s a t i s f i e d for a l l x , y , z , t € 

6 L: 

1) x 0 y i f f ( x n y ) 6 ( x u y ) * 

2) x 6 y 6 z , x 0 y , and y 9 z imply that x © z# 

3) x 6 y and x 0 y imply that ( x u t ) 0 ( y u t ) and 

( x o t ) 0 ( y o t ) . 

Lemma 2 . Let L be a f i n i t e l a t t i c e , 0 4* e a congru

ence on Sub (L). Then there i s an atom (a) in Sub (L), such 

that ( a ) s ti ( 0 ) . 

LemTpfi j - I f 0 i s a congruence on a l a t t i c e L, t p , q l , 

C r , 8 l are transposes , then p 0 q imp l ies r 0 a* 

Def in i t ion . An element of a poset P i s ca l l ed f u l l y com

parable ( f . c . element) i f i t i s comparable with any element 

of P. A set conaiating of f . c . element8 i s ca l led f. c. set* 
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Remark. If IEL is an f.c. set, x e Sub (L) f then 

(x<y> I) = (xvI)eSub (L). 

Definition. Let I be an f.c. subset of a lattice L. 

Let 'Cj denote the binary relation on Sub (L) defined in the 

following way: 

for x,yeSub (L) x Tjy iff there is J£I such that 

(xAy) <&tv J -xvy. 

It can be easily shown that tf.-. is reflexive and symmetric* 

Proposition 1. Let L be a lattice, I an f.c. subset of 

L. Then t j is a congruence relation on S b (L). 

Proof. We shall verity the properties from Lemma 1. 

1) Obvious. 

2) x-fey^rz and l e t J f j ' c I be such that 

XU.VJ = (xAyJt&y J s t x v y = y and y ^ j ' = (yA z) <&*> j ' = y v z ~ z . 

Then z = x u * i > J u 0 j ' f i . e . x t v z . 

3) Let x ,y , t«Sub (L), x £ y and x or^y. Then x <s* J -* 

=* (xAy)tttv J - x v y - y. But J i s an f . c . subset (a l so a sub-

l a t t i c e ) f so that y v t * (x <w J) v t -* ( x v J) v t « x v t v J * 

* ( x v t ) ^ J , thus ( x v t ) T . j . ( y v t ) . Similarly 

y A t =- ( x ^ J ) A t * (x*"S.t)fc£» (J /?» t ) * ( x A t ) v y j ' , i . e . 

( y A t ) t - . ( x A t ) . 

The proof i s f i n i s h e d . 

The most important spec ia l case i n the la s t d e f i n i t i o n i s 

I = ( b ) . We s h a l l write i n t h i s case t H instead of ^ ( K ) » 

Proposit ion 2 . Let L be a f i n i t e l a t t i c e , b e L an f . c * 

element. Then the congruence T ^ I S an atom in C(Sub ( D ) . 

Proof. By Lemma 2 any congruence 0 4* %, which i s con

tained in <X, b , contains t i , c 3 for some c e L. By the d e f i n i -
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tion of 1?b we have c -* b, which implies that the congruen

ce 9 c <X. k is necessarily such that ( b ) s 0 ( 9 ) . 

Further, by Lemma 3 and by definition, ^ ^ i s the smal

lest of al l congruences for which ( b ) s 0, so that 9 ~ li^. 

Corollary 1. Let L be a f inite latt ice . Sub (L) is sub-

directly irreducible i f f card L = 1. 

Proof. Since every finite latt ice L, card L> 2 has 0 # 1 , 

the assertion follows from the last proposition. 

Now, we shall convert Proposition 2 and show that any ato

mic congruence on Sub (L) has the form of a^ for an f . c . e le 

ment b 6 L. 

Theorem 1. Let L be a f ini te lat t ice . Then there i s one-

to-one correspondence between f . c . elements of L and atomic 

congruences on Sub (L); to an f#e. element b corresponds the 

congruence tr^ described abova* 

Proof. Let f 4* fc- be a congruence on Sub (L). By Lem

ma 2 there is b€L such that (b) s j6(p ) . If b i s an f.c* e l e 

ment, then by the proof of Proposition 2 t b s j> and we 

are done. 

If b i s not fully comparable, there i s c c L such that 

A - (b,c,bn c,buc) is a four element sublattice of L# Since 

(b) A (c) == 6 and (b) v (c) » A we have t0 ,b I/9 t c,A3 in Sub (L), 

We show that ( b u c ) s t> (j>)» 

Since c4=buc we have (c) A (bu C) =- lb and (c)v (buc) « 

-» ( c « w ( b u c ) ) I j * ( c ^ ( b u c ) ) , thus C0,buc3 .*Ec fcn0 (bucXL 

Now ( b ) a 0 (g> ) and t 0,b l«*l c,A3 , hence c * A ($> ) • 

Since ( c ) c (c*^ ( b u c ) ) c A and every congruence class is 

a convex sublattice, we obtain 

- 544 



c s ( c v ( b u c ) ) (m) and thus, finally 

(bu c) s t (<p ). 

We shall distinguish two cases. 

Case I . If buc is an f .c . element, then the congruence 

**~ bue *fl a n a*om *n C(Sub ( D ) , and since b + b u c , i t i s ne

cessarily ^D U C
 c ? • The proof is in this case finished. 

Case II . If buc is not comparable with d € L we repeat 

the previous consideration and obtain ( b u c u c t i e J0 (50). 

If bu cud i s an f . c . element of L, we are finished. If not, 

we continue analogously. Since L i s f in i te , we f inally obtain 

an f. c. element k e L such that the atomic congruence t K i s 

contained in <p • The proof i s finished. 

Now we can describe a certain sublattice of C(Sub (D) 

by uaing the atoms t D« 

Theorem 2 . Let L be a f inite la t t i ce , I the set of a l l 

f . c . elements of L, (b^f.fb.^) =- J £ l . Then in C(Sub (D) 

* b x
u * b ^ — i > ^ b f f i * * J 

Pr£c£. We denote the congruence on the left hand side by 

0 . Let $ be a congruence such that § S K D for i * 

*-: l f 2 , , . # , m . Let x tjy» Then there i s J f i J such that x v y * 

*t ( x A y ) ^ j ' # Suppose J'= (bjj, , . . . b^ ) , let c0 =*x:Ay and 

<lefine c
8 * c s - l u bk * 8 s l*2t*.»9Z . Then c0< c-̂ < . . . < c^ 

<md ( ca-.i»ca' € ^b £ $ • T h u s b y t n e transitivity of $ 

CQ ~ (xAy) $ (xvy) - c^ • By Lemma 1 x $ y; thus f j £ $ 

^od, consequently T j » 0 • 
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Corollary 2 . Let L be a f i n i t e l a t t i c e , I the aet of 

a l l f . c . elementa of Lf card L = n. Then C(Sub (L)) containa 

as a aub la t t i ce the Boolean l a t t i c e 2 having e aa the amal-

l e s t element and T j as the greatest one. 

Now, i t i s easy to reformulate our resu l t3 as neces3ary 

conditiona for a f i n i t e l a t t i c e L to be L - Sub ( L ' ) . 

Let I denote the aet of atoms of L the union of which 

with any d i f f erent atom ia of height 2 . Let card I = n. 

1) L ia 9ubd irect ly reducib le or card L = 2. 

2) All atome in C(L) are exact ly the congruences f^ 

(where b€ I) defined by b m 0» The element b i e the only e l e 

ment of L i d e n t i f i e d with 0 by the congruence tr^. 

3) The l a t t i c e C(L) containa a Boolean l a t t i c e 2 n as 

i t s s u b l a t t i c e . This l a t t i c e has e aa the smallest element 

and T^; b e I are exact ly a l l i t s atoma. 

R e f e r e n c e 

[11 G. GRXTZER: Lattice theory: Firat concepte and distribu
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