Commentationes Mathematicae Universitatis Carolinae

Ivan Vlček
 On congruences of the lattices $\operatorname{Sub}(\mathrm{L})$

Commentationes Mathematicae Universitatis Carolinae, Vol. 18 (1977), No. 3, 541--546

Persistent URL: http://dml.cz/dmlcz/105798

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSIT ATIS CAROLINAE

18,3 (1977)

ON CONGRUENCES OF THE LATTICES SUB (L)
Ivan VLČEK, Praha

Abstract: G. Grätzer suggested (see l, problem 7) to characterize the lattice Sub. (L). In this paper some necessary conditions for $L=$ Sub (L^{\prime}) for a finite lattice L are given.

Key words: Lattices Sub (L), transposes, f.c. elements, atomic congruence.

AMS: 06A2O Ref. Ž.: 2.724.61

1. Prelimingries. Let L be a lattice. Sub (L) denotes the lattice of all sublattices of L, ordered by the set inclusion. $C(L)$ denotes the lattice of all congruences on $L ; \varepsilon$ denotes the smallest element of $C(L)$ (identity on L).

The set consisting of elements a, b, \ldots is denoted by (a, b, \ldots). If M is a set, we sometimes write, (M) instead of M. The symbols \AA, \Perp denote set intersection and union respectively.

The symbols n, \cup denote the lattice operations of L. For the lattice operations of Sub (L) we use symbols \wedge, \vee. By $(a, b, \ldots)_{L},{ }^{(M)} L_{L}$ the sublattices of L generated by (a, b, \ldots), M are denoted.

It is well-known that Sub (L) is a complete, atomic algebraic lattice having D as the smallest element and L as the greatest one. All atoms in Sub (L) are precisely all one ele-
ment subsets of L.
2. Congruences on Sub (L).

Definition. A lattice L is called subdirectly irreducible if for any arbitrary system $\left(\Theta_{i}\right)_{I} \subseteq C(L)$ holds: $\cap \Theta_{i}=\varepsilon$ implies that $\Theta_{j}=\varepsilon$ for some $j \in I$.

Definition. Two (closed) intervals $[a, b],[c, d]$ are called transposes if $a=b \cap c, d=b \cup c$ or $c=a \cap d, b=a \cup d$. In the first case we write $[a, b] \not \subset[c, d]$, in the second case $[a, b] \lambda[c, d]$. It is obvious that the relations $\not \subset, \geq$ are transitive.

We shall use the following lemmas.
Lemmal (see [1], p. 24). A reflexive and symmetric binary relation Θ on a lattice L is a congruence relation iff the following three properties are satisfied for all $x, y, z, t \in$ $\epsilon \mathrm{L}:$

1) $x \theta y$ iff $(x \cap y) \theta(x \cup y)$.
2) $x \leqslant y \leqslant z, x \Theta y$, and $y \theta z$ imply that $x \Theta z$.
3) $x \leqslant y$ and $x \Theta y$ imply that $(x \cup t) \Theta(y \cup t)$ and $(x \cap t) \Theta(y \cap t)$.

Lemma 2. Let L be a finite lattice, $\Theta \neq \varepsilon$ a congruence on Sub (L). Then there is an atom (a) in Sub (L), such that $(a) \equiv \varnothing(\theta)$.

Lemma 3. If Θ is a congruence on a latice $L,[p, q]$, $[r, s]$ are transposes, then $p \theta$ qimplies $r \theta$ s.

Definition. An element of a poset P is called fully comparable (f.c. element) if it is comparable with any element of P. A set consisting of f.c. elements is called feceset.

Remark. If $I \subseteq L$ is an f.c. set, $x \in \operatorname{Sub}(L)$, then $(x \in I)=(x \vee I) \in \operatorname{Sub}(L)$.

Definition. Let I be an f.c. subset of a lattice L. Let τ_{I} denote the binary relation on Sub (L) defined in the following way:
for $x, y \in \operatorname{Sub}(L) \quad x \tau_{I} y$ iff there is $J \subseteq I$ such that (x^y) ש $J=x \vee y$.

It can be easily shown that τ_{I} is reflexive and symmetric.
proposition 1. Let L be a lattice, I an f.c. subset of L. Then τ_{I} is a congruence relation on $S b(L)$.

Proof. We shall verity the properties from Lemma 1.

1) Obvious.
2) $x \leqslant y \leqslant z$ and let $J, J^{\prime} \subseteq I$ be such that x ש $J=(x \wedge y)$ ש $J=x \vee y=y$ and $y \in J^{\prime}=(y \wedge z) \in J^{\prime}=y \vee z=z$. Then $z=x 凶 J \uplus J^{\prime}$, i.e. $x \tau_{I}{ }^{2}$
3) Let $x, y, t \in \operatorname{Sub}(L), x \leq y$ and $x \tau_{I} y$. Then $x \in J=$ $=(x \wedge y) \in J=x \vee y=y$. But J is an f.c. subset (also a sublattice), so that $y \vee t=(x \in J) \vee t=(x \vee J) \vee t=x \vee t \vee J=$ $=(x \vee t) \in J$, thus $(x \vee t) \tau_{I}(y \vee t)$. Similarly $y \wedge t=(x \in J) \wedge t=(x \propto t) \in(J \cap t)=(x \wedge t) \cup J^{\prime}$, i.e. ($y \wedge t$) $\tau_{I}(x \wedge t)$.

The proof is finished.
The most important special case in the last definition is $I=(b)$. We shall write in this case τ_{b} instead of $\tau_{(b)}$.

Proposition 2. Let L be a finite lattice, $b \in L$ an f.c. element. Then the congruence τ_{b} is an atom in $C(S u b(L))$.

Proof. By Lemma 2 any congruence $\theta \neq \varepsilon$ which is contained in τ_{b}, contains $[D, c]$ for some $c \in L$. By the defini-
tion of τ_{b} we have $c=b$, which implies that the congruence $\theta \subset \tau_{b}$ is necessarily such that $(b) \equiv \varnothing(\theta)$.

Further, by Lemma 3 and by definition, τ_{b} is the smallest of all congruences for which $(b) \equiv \downarrow$, so that $\theta=\tau_{b}$

Corollary. Let L be a finite lattice. Sub (L) is subdirectly irreducible iff card $L=1$.

Proof. Since every finite latice L, card $L \geq 2$ has $0 \neq 1$, the assertion follows from the last proposition.

Now, we shall convert Proposition 2 and show that any atomic congruence on Sub (L) has the form of τ_{b} for an f.c. element $b \in L$.

Theorem. Let L be a finite lattice. Then there is one-to-one correspondence between f.c. elements of L and atomic congruences on Sub (L); to an f.c. element b carresponds the congruence τ_{b} described above.

Proof. Let $\rho \neq \varepsilon$ be a congruence on Sub (L). By Lemma 2 there is $b \in L$ such that $(b) \equiv \varnothing(\rho)$. If b is an f.c. element, then by the proof of Proposition $2 \tau_{b}=\rho$ and we are done.

If b is not fully comparable, there is $c \in L$ such that $A=(b, c, b \cap c, b \cup c)$ is a four element sublattice of L. Since $(b) \wedge(c)=\varnothing$ and $(b) \vee(c)=A$ we have $[\varnothing, b] \not \subset[c, A]$ in Sub (L).

Fe show that $(b \cup c)=D(\rho)$.
Since $c \neq b \cup c$ we have $(c) \wedge(b \cup c)=\varnothing$ and $(c) \vee(b \cup c)=$ $=(c \in(b \cup c))_{L}=(c \in(b \cup c))$, thus $[\varnothing, b \cup c] ォ[c, c \in(b \cup c)]$.

Now $(b)=\varnothing(\rho)$ and $[\varnothing, b] \not \subset[c, A]$, hence $c=A(\rho)$.
Since $(c) \subset(c \in(b \cup c)) \subset A$ and every congruence class is
a convex sublattice, we obtain
$c=(c \cup(b \cup c))(\rho)$ and thus, finally
$(b \cup c) \equiv \varnothing(\rho)$.
We shall distinguish two cases.
Case I. If buc is an f.c. element, then the congruence $\tau_{\text {buc }}$ is an atom in $C(S u b(L))$, and since $b \neq b u c$, it is necessarily $\tau_{b u c} \subset \rho$. The proof is in this case finished.

Case II. If buc is not comparable with $d \in L$ we repeat the previous consideration and obtain (bucud) $=0$ (ρ) : If bucud is an f.c. element of L, we are finished. If not, we continue analogously. Since L is finite, we finally obtain an f.c. element $k \in L$ such that the atomic congruence τ_{K} is contained in ρ. The proof is finished.

Now we can describe a certain sublattice of C(Sub (L)) by uaing the atoms τ_{b}.

Theorem 2. Let L be a finite lattice, I the set of all f.c. elements of $L,\left(b_{1}, \ldots, b_{m}\right)=J \subseteq I$. Then in $C(S u b(L))$

$$
\tau_{b_{1}} \cup \tau_{b_{2}} \cup \ldots \cup \tau_{b_{m}}=\tau_{J}
$$

Proof. We denote the congruence on the left hand side by θ. Let Φ be a congruence such that $\Phi \supseteq \tau_{b_{i}}$ for $i=$ $=1,2, \ldots, m$. Let $x \tau_{J} y$. Then there is $J^{\prime} \subseteq J$ such that $x v y=$ $=(x \wedge y) \cup J^{\prime}$. Suppose $J^{\prime}=\left(b_{k_{1}}, \ldots b_{k}\right)$, let $c_{0}=x \wedge y$ and define $c_{s}=c_{s-1} \cup b_{k_{s}}, s=1,2, \ldots, l$. Then $c_{0}<c_{1}<\ldots<c_{\ell}$ and $\left(c_{s-1}, c_{s}\right) \in \tau_{b_{s}} \in \Phi$. Thus by the transitivity of Φ $c_{0}=(x \wedge y) \Phi(x \vee y)=c_{l}$. By Lemma $1 \quad x \Phi y ;$ thus $\tau_{J} \subseteq \Phi$ And, consequently $\tau_{J}=\theta$.

Corollany 2. Let L be a finite lattice, I the set of all f.c. elements of L, card $L=n$. Then $C(S u b(L))$ contains as a sublattice the Boolean lattice 2^{n} having ε as the smallest element and τ_{I} as the greatest one.

Now, it is easy to reformulate our results as necessary conditions for a finite lattice L to be $L=\operatorname{Sub}\left(L^{\prime}\right)$.

Let I denote the set of atoms of L the union of which with any different atom is of height 2. Let card $I=n$.

1) L is subdirectly reducible or card $L=2$.
2) All atoms in $C(L)$ are exactly the congruences τ_{b} (where $b \in I$) defined by $b=0$. The element b is the only element of L identified with O by the congruence τ_{b}.
3) The lattice $C(L)$ contains a Boolean lattice 2^{n} as its sublattice. This lattice has ε as the smallest element and $\tau_{b} ; b \in I$ are exactly all its atoms.

Reference

[1] G. GRÄTZER: Lattice theory: First concepts and distributive lattices, Freeman, San Francisco 1971.

VGSTE
Velflikova 4, 16000 Praha 6
そeskos lovensko

Oblatum 16.6. 1977)

