Commentationes Mathematicae Universitatis Carolinae

Alex Chigogidze

Inductive dimensions for completely regular spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 18 (1977), No. 4, 623--637

Persistent URL: http://dml.cz/dmlcz/105807

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLITAB
18,4 (1977)

INDUCTIVE DIMENSIONS FOR COMPIETELY REGULAR SPACES
A. CHIGOGIDZE, Tbilisi

Abstract: Relative inductive dimensions and two new inductive dimensions for comple tely regular spaces are studied.

Key words: Relative dimension, relative realcompactness, Wallman realcompactification, zero-mapping, cozeromapping.

AMS: 54F45
Ref. Ž.: 3.967.1
O. Preliminaries. All given spaces are assumed to be completely regular. The collection of all zero-sets in X will be denoted by $Z(X)$. If $X \subseteq Y$, then $Z(X, Y)$ is the trace on X of the collection $Z(Y)$. Let $N(X)$ denote the family of all collections of the form $Z(X, Y)$ [1],[2]. Obviously each element of $N(X)$ is precisely a nest generated intersection ring in the sense of [3], a strong delta normal base in the sense of [4] and a zero-set structure in the sense of [5]. If $\mathcal{F} \in$ $\in \mathbb{N}(\mathrm{X})$, then $\mathbf{W}(\mathrm{X}, \mathfrak{F})$ denotes the Wallman compactification and $\nabla(X, \mathfrak{F})$ - the Wallman realcompactification of $X[3]$. When there is no question as to the space X, we will simply write $w(\mathcal{F}), \boldsymbol{V}(\mathcal{F})$. The space of real numbers is denoted by R.

The following definitions and propositions are given in [1], [2].

Definition 0.1 . Let $X \subseteq Y$. We call a mapping $f: X \rightarrow X^{\prime}$ a $Z(X, Y)$-mapping if $f^{-1}(Z)$ is an element of the collection $Z(X, Y)$ for each zero-set Z of X^{\prime}.

Definition 0.2. Let $X \subseteq Y$. We shall say that a space X is realcompact with respect to Y if $X=V(X, Z(X, Y))$.

Proposition 0.1. Let $\mathcal{F} \in N(X), ~ \forall(\mathcal{F})$ is the smallest space between X and $w\left(\mathfrak{F}^{\prime}\right)$, which is realcompact with respect to $w(\mathfrak{J})$. In particular, X is realcompact with respect to $w(\mathcal{F})$ if and only if $X=v(\mathcal{F})$.

Proposition 0.2 . Let $\mathcal{F} \in N(X)$ and $X \subseteq T \subseteq w(\mathcal{F})$. The following statements are equivalent.
(1) Every $Z(X, w(\mathcal{F}))$-mapping from X into any realcompact space Y has an extension to a $Z\left(T, w\left(\mathcal{F}^{\prime}\right)\right.$)-mapping from T into Y.
(2) Every $Z(X, w(\mathfrak{F})$-mapping from X into R has an extension to a $Z(T, w(\mathcal{F})$)-mapping from X into R.
(3) If a countable family of elements of the collection \mathcal{F} has empty intersection, then their closures in T have empty intersection.
(4) For any countable f amily of elements F_{n} of the collection \mathcal{F}°.

$$
\left[\bigcap_{n=1}^{\infty} F_{n}\right]_{T}=\bigcap_{n=1}^{\infty}\left[F_{n}\right]_{T} .
$$

(5) Every point of T is the limit of a unique, real, \mathcal{F}-ultrafilter on X.
(6) $X \subseteq T \subseteq \nabla(\boldsymbol{J})$.
(7) $\quad \nabla(T, Z(T, w(\nsim)))=v(\mathcal{F})$.

Proposition 0.3. Let $\mathcal{F} \in N(X)$ and $F \in \mathcal{F}$. Then $[F]_{V}(\mathcal{F})$
is an element of the collection $Z(\boldsymbol{V}(\mathcal{F}), w(\mathcal{F}))$ and $\mathrm{v}(\mathrm{F}, \mathrm{Z}(\mathrm{F}, \mathrm{w}(\mathfrak{F})))=[F]_{\mathrm{V}(\mathfrak{F})}$.

Proposition 0.4. Let $\mathcal{F} \in N(X)$ and $F \in Z(\nabla(\mathcal{F}), w(\mathfrak{F}))$. Then $F=[F \cap X]_{V(\mathcal{F})}$.

1. Relative dimensions $I(X, Y)$ and $i(X, Y)$

Definition 1.1. Let $X \subseteq Y$. The relative large inductive dimension of X with respect to Y, denoted by $I(X, Y)$, is defined inductively as follows. $I(X, Y)=-1$ if and only if $X=\varnothing$. For a non-negative integer $n, I(X, Y) \leqslant n$ means that for each pair Z_{1}, Z_{2} of disjoint elements of collection $Z(X, Y)$, there exist $Z \in Z(X, Y), O_{1}, O_{2} \in C Z(X, Y)$ with $X-Z=$ $=O_{1} \cup O_{2}, O_{1} \cap O_{2}=\varnothing, Z_{i} \subseteq O_{i}(i=1,2)$ and $I(Z, Y) \leqslant n-1$. $I(X, Y)=n$ if $I(X, Y) \leqslant n$ and $I(X, Y) \notin n-1 . I(X, Y)=\infty$ means that there is no n for which $I(X, Y) \leqslant n$.

The relative small inductive dimension $i(X, Y)$ of X with respect to Y is defined by analogy with Definition l.1.

These relative dimensions $I(X, Y)$, $i(X, Y)$ are topological invariants in the following sense: if f is a homeomorphism from Y onto any space Y^{\prime} with $f(X)=X^{\prime}(X \subseteq Y)$, then $I(X, Y)=I\left(X^{\prime}, Y^{\prime}\right)$ and $i(X, Y)=i\left(X^{\prime}, Y^{\prime}\right)$. On the other hand, these relative dimensions are not topological invariants in the usual sense [1].

The following two lemmas are obvious.
Lemma 1.1. Let $X \subseteq T \subseteq Y$. If T is z-embedded [6] in Y, then $I(X, T)=I(X, Y)$ and $i(X, T)=i(X, Y)$.

Lemma 1.2. Let $X \subseteq Y$. If $Z \in Z(X, Y)$, then $I(Z, Y) \leqslant I(X, Y)$.

Lemma 1.3. Let $X \subseteq Y$. If a space X is the union of sequence $\left\{D_{i}\right\}$ of disjoint sets such that the partial unions $j U_{i} D_{j}$ are elements of the collection $Z(X, Y)$, then $I(X, Y) \leqslant$ $\sup I\left(D_{i}, Y\right)$.

Proof. The proof of this lemma is simila to the proof of the Dowker's additive theorem for dimension Ind in completely normal spaces [7].

Lemma 1.4. Let $X \subseteq Y$. If $G \in C Z(X, Y)$, then $I(G, Y) \leqslant$ $\leqslant I(X, Y)$.

Proof. Let $I(X, Y)=k$. In case $k=-1$ the lemma holds clearly. We suppose that $k \leqslant n$ and that the lemma holds for $\mathbf{k} \leqslant \mathbf{n}-1$.

Let $Z \in Z(G, Y)$ and $O Z \in C Z(G, Y)$ with $Z \subseteq O Z$. We may choose four sequences:

1. $\left\{Z_{i}\right\}_{i=1}^{\infty}, Z_{i} \in Z(X, Y), i=1,2, \ldots$,
2. $\left\{O_{i}\right\}_{i=1}, O_{i} \in C Z(X, Y), i=1,2, \ldots$,
3. $\left\{F_{i}\right\}_{i=1}^{\infty}, F_{i} \in Z(G, Y), i=1,2, \ldots$,
4. $\left\{G_{i}\right\}_{i=1}^{\infty}, G_{i} \in C Z(G, Y), i=1,2, \ldots$
with

$$
\begin{aligned}
& Z_{i} \subseteq 0_{i+1} \subseteq Z_{i+1} \subseteq G=\bigcup_{i=1}^{\infty} Z_{i}, i=1,2, \ldots, \\
& Z=\bigcap_{i=1}^{\infty} F_{i} \subseteq F_{i+1} \subseteq G_{i} \subseteq F_{i} \subseteq 0 Z, i=1,2, \ldots .
\end{aligned}
$$

Hin Lemma 1.2, $I\left(Z_{i+1}, Y\right) \leq n$ and hence there are $S_{i} \in Z\left(Z_{i+1}, Y\right)$; $T_{i} \in C Z\left(Z_{i+1}, Y\right), i=1,2, \ldots$ with $Z \cap Z_{i} \subseteq T_{i} \subseteq S_{i} \subseteq G_{i} \cap O_{i+1}$ and $I\left(S_{i}-T_{i}, Y\right) \leq n-1, i=1,2, \ldots$. Evidently $T_{i} \in C Z\left(O_{i+1}, Y\right)$ and hence $T_{i} \in C Z(G, Y), i=1,2, \ldots$. Let $S=\bigcup_{i=1}^{\infty} S_{i}, T=$ $=\bigcup_{i=1}^{\infty} T_{i}$. We have $Z \subseteq T \subseteq S \subseteq O Z, T \in C Z(G, Y)$ and

$$
s_{i} \subseteq \bigcap_{k=1}^{\infty}\left\{r_{k} \cup\left[\cup_{j<k} s_{j}\right]\right\} \subseteq \bigcap_{k=1}^{\infty} F_{k} \cup s, i=1,2, \ldots .
$$

Hence $S=\bigcap_{k=1}^{\infty}\left\{F_{\mathbf{k}} \cup\left[\bigcup_{j k} S_{j}\right]\right\}$ and so S is on element of the collection $Z(G, Y)$.

Let $D_{k}=i Y_{k}\left(S_{i}-T_{i}\right)$ and $D=\bigcup_{k=1}^{\infty} D_{k}$. Clearly, $D_{k+1}-$ - D_{k} is an element of the collection $C Z\left(S_{k+1}-T_{k+1}, Y\right)$ and by the induction hypothesis $I\left(D_{k+1}-D_{p_{k}}, Y\right) \leqslant n-1$. Then by: Lemma 1.3, $I(D, Y) \leqslant n-1$. Finally, $S-T \in Z(D, Y)$ and so, by Lemma 1.2, $I(S-T, Y) \leq n-1$. Thus $I(G, Y) \leq n$.

Theorem 1.1. (The subspace theorem.) If $M \subseteq N \subseteq X$, then $I(M, X) \leqslant I(N, X)$.

Proof. Let $I(N, X)=k$. For $k=-1$ the result is trivial. We assume its validity for $k \leqslant n-1$ and suppose $k \leqslant n$.

Let Z_{1}, Z_{2} be disjoint elements of the collection $Z(M, X)$. There are elements F_{1}, F_{2} of $Z(N, X)$ with $Z_{i}=F_{i} \cap M$ ($I=1,2$). Evidently, $N-\left(F_{1} \cap F_{2}\right)=G \in C Z(N, X)$ and hence, by Lemma 1.4, $I(G, X) \leqslant n$. There are $F \in Z(G, X), G_{1}, G_{2} \in C Z(G, X)$ with $G-F=G_{1} \cup G_{2}, G_{1} \cap G_{2}=\varnothing, F_{i} \cap G \subseteq G_{i}(i=1,2)$ and $I(F, X)<n-1$. Clearly, $G_{i} \in C Z(N, X)(i=1,2)$. Finally, let $F \cap M=Z, G_{i} \cap M=O_{i}(i=1,2)$. Then $M-Z=O_{1} \cup O_{2}, O_{1} \cap O_{2}=$ $=\varnothing, Z_{i} \subseteq O_{i}(i=1,2), Z \in Z(M, X), O_{1}, O_{2} \in C Z(M, X)$ and by the induction hypothesis $I(Z, X) \leqslant I(F, x) \leqslant n-1$. Thus $I(M, X) \leqslant n$.

Theorem 1.2. (The countable sum theorem.) Let $X \subseteq Y$. If $X=\bigcup_{i=1}^{\infty} Z_{i}$ with $Z_{i} \in Z(X, Y)$ and $I\left(Z_{i}, Y\right) \leqslant n$ for all $i=1,2, \ldots$, then $I(X, Y) \leq n$.

Proof. For $n=-1$ the result is trivial. We assume its validity for $n \leqslant k-1$ and suppose $n \leqslant k$.

Let $D_{j}=\bigcup_{i} \bigcup_{j} Z_{i}$. Each D_{j} is an element of the collection
$Z(X, Y)$ and by the subspace theorem $I\left(D_{j+1}-D_{j}, Y\right) \leqslant$ $\leq I\left(Z_{j+1}, Y\right) \leq k$. Then by Lemma $1 \cdot 3, I(X, Y) \leq k$.

Theorem 1.3. If $M \subseteq N \subseteq X$, then $i(M, X) \leqslant i(N, X)$
Proof is obvious.
Theorem 1.4. If $X \subseteq Y \subseteq T$, then $i(X, Y) \leq i(X, T)$.
Proof. Let $i(X, T)=k$. For $k=-1$ the result is trivial. We assume its validity for $k \leq n-1$ and suppose $k \leq n$.

Let $x \notin Z$ and $Z \in Z(X, Y)$. There is a zero-set F^{\prime} in T such that $Z \subseteq F^{\prime}$ and $x \notin F^{\prime}$. Hence $F=F^{\circ} \cap X$ is an element of the collection $Z(X, T)$ with $Z \subseteq F$ and $x \notin F$. There are $O_{1}, O_{2} \in$ $\in C Z(X, T), D \in Z(X, T)$ such that $X-D=O_{1} \cup O_{2}, O_{1} \cap O_{2}=\varnothing$, $x \in O_{1}, F \subseteq O_{2}$ and $i(D, T) \leqslant n-1$. Cle arly, $D \in Z(X, Y), O_{1}, O_{2} \in$ $C Z(X, Y)$ and by the induction hypothesis $i(D, Y) \leq i(D, T) \leq n-1$. Thus $i(X, Y) \leq n$.

Theorem 1.5. If $A \cup B \subseteq Y$, then $I(A \cup B, Y) \leqslant I(A, Y)+$ $+I(B, Y)+1$.

Proof. Let $I(A, Y)=k_{1}, I(B, Y)=k_{2}$ and $A U B=X$. For $k_{1}=\mathbf{k}_{2}=-1$ the result is trivial. Let $k_{1} \leqslant n, k_{2} \leqslant m$ and assume the theorem for the cases $k_{1} \leqslant n, k_{2} \leqslant m-1$ and $k_{1} \leqslant n-1$, $k_{2} \leq m$.

Let Z_{1}, Z_{2} be disjoint elements of the collection $Z(X, Y)$. Choose $O_{1}, O_{2} \in C Z(X, Y)$ and $F_{1}, F_{2} \in Z(X, Y)$ with $Z_{i} \subseteq O_{i} \subseteq$ $\subseteq_{i}\left(i=1, D^{\prime}\right)$ and $F_{1} \cap F_{2}=\varnothing$. Since $I(A, Y) \leq n$, there are G_{1}, $G_{2} \in C Z(A, Y)$ and $D \in \hat{Z}(A, Y)$ with $A-D=G_{1} \cup G_{2}, G_{1} \cap G_{2}=\varnothing$, $F_{i} \cap A \subseteq G_{i}(i=1,2)$ and $I(D, Y) \leq n-1$. By Proposition 14 from [8], there are $V_{1}, V_{2} \in C Z(X, Y)$ with $V_{i} \cap A=G_{i}(i=1,2)$ and $V_{1} \cap V_{2}=\varnothing$. Then $U_{1}=\left(V_{1}-F_{2}\right) \cup O_{1}$ and $U_{2}=\left(V_{2}-F_{1}\right) \cup O_{2}$
are disjoint elements of the collection $C Z(X, Y)$ with $Z_{i} \subseteq U_{i}$ $(i=1,2)$ and $A-\left(U_{1} \cup U_{2}\right)=D . I\left(A-\left(U_{1} U U_{2}\right), Y\right)=I(D, Y) \leqslant$ $\leq n-1$; by the subspace theorem, $I\left(B-\left(U_{1} \cup U_{2}\right), Y\right) \leq m$. By the induction hypothesis $I\left(X-\left(U_{1} U U_{2}\right), Y\right) \leq n+m$. Thus $I(X, Y) \quad n+m+1$.

Theorem 1.6. If $A \cup B \subseteq Y$, then $i(A \cup B, Y) \leqslant i(A, Y)+$ $+i(B, Y)+1$.

Proof is similar to the proof of Theorem 1.5.
Theorem 1.7. If $\mathfrak{F} \in N(X)$, then $I(X, w(\mathbb{F}))=I(\mathbb{F}(\boldsymbol{F})$, w(f)).

Proof. The theorem follows from Proposition 0.3 and from the following le mma.

Lemma 1.5. Let $\mathcal{F} \in N(X)$. If two disjoint elements F_{1}, F_{2} of the collection \mathfrak{F} can be separated: by an element F of the collection \mathcal{F}, then $[F]_{V}(\mathcal{F})$ separatea $\left[F_{i}\right]_{V}(\mathcal{F})$ i $=$ $=1,2$.

Proof is trivial.
Theorem 1.8. If $X \subseteq Y$, then $i(X, Y)$ If $(X ; Y)$.
Proof is trivial.
Definition 1.2. Let $X \subseteq Y$. The relative large inductive dimension modulo R, denoted by $\mathrm{R}-\mathrm{I}(\mathrm{X}, \mathrm{Y})$, is defined inductively as follows. $R-I(X, Y)=-1$ if and only if X is realcompact with respect to Y. For a non-negative integer n, $R-I(X, Y) \leqslant n$ means that for each pair $Z_{1} ; Z_{2}$ of disjoint elements of the collection $Z(X, Y)$, there are $Z \in Z(X, Y), O_{1}$, $o_{2} \in C Z(X, Y)$ with $X-Z=o_{1} \cup o_{2}, o_{1} \cap o_{2}=\varnothing, z_{i} \quad o_{i} \quad(i=1$, 2) and $R-I(Z, Y) \leqslant n-1$.

Theorem 1.9. If $\mathcal{F} \in N(X)$, then $R-I(X, w(\mathfrak{F}))=$ $=I(\mathbb{F}(\mathfrak{F})-X, w(\mathfrak{F}))$.

Proof. a) $R-I(X, w(\mathcal{F})) \leqslant I(\nabla(\mathfrak{F})-X, w(\mathcal{F}))$.
Let $I(\mathcal{F}(\mathcal{F})-X, w(\mathfrak{F}))=k$. For $k=-1$ the result is trivial. We assume its validity for $k \leqslant n-1$ and suppose $k \leqslant n$.

Let $z_{1}, z_{2} \in \mathscr{F}$ and $z_{1} \cap z_{2}=\varnothing$. There are $v_{1}, v_{2} \in \mathbb{F}$, $T_{1}, T_{2} \in \mathcal{F}$ with $Z_{i} \subseteq v_{i} \subseteq T_{i}(i=1,2)$ and $T_{1} \cap T_{2}=\varnothing$. By the propositions $0.2,0.3,\left[T_{1}\right]_{V(\mathcal{F})} \cap\left[T_{2}\right]_{V(F)}=\varnothing$ and $\left[T_{i}\right]_{V(\mathcal{F})} \in$ $Z(\nabla(\mathcal{F}), w(\mathcal{F}))(i=1,2)$. Clearly, $\left[T_{i}\right] \forall(\mathcal{F}) \cap(\nabla(\mathcal{F})-X)=$ $=F_{i} \in Z(\nabla(\mathcal{F})-X, w(\mathcal{F}))(i=1,2)$ and $F_{1} \cap F_{2}=\varnothing$. There are sets $F \in Z(V(F)-X, w(\mathfrak{F})), G_{1}, G_{2} \in \operatorname{CZ}(v(\mathcal{F})-X, w(\mathcal{F}))$ with $F_{i} \subseteq G_{i}(i=1,2), G_{1} \cap G_{2}=\varnothing,(v(\mathcal{F})-x)-F=G_{1} \cup G_{2}$ and $I(F, w(\mathcal{F})) \leqslant n-1$. By Proposition 14 from [8], there are $G_{i}^{\prime} \in C Z(v(\mathcal{F}), w(\mathcal{F}))$ with $G_{i}^{\prime} \cap G_{i}^{\prime}=\varnothing$ and $G_{i}^{\prime} \cap(\nabla(\mathcal{F})-x)=$ $=G_{i}(i=1,2)$. Let $U_{1}=G_{1}^{\prime}-\left[T_{2}\right]_{v}(\xi)$ and $U_{2}=G_{2}^{\prime}-\left[T_{1}\right]_{\nabla(\mathcal{F})}$. Cle arly, $U_{1} \cap U_{2}=\varnothing, U_{1} \cap T_{2}=\varnothing, U_{2} \cap T_{1}=\varnothing, U_{i} \cap(\nabla(\mathcal{F})-X)=$ $=G_{i}(i=1,2)$ and $U_{i} \in C Z(v(\mathfrak{F}), w(\boldsymbol{T}))(i=1,2)$. Let $H_{i}=$ $=U_{i} \cup O_{V(\xi)}\left(\nabla_{i}\right)$, where $O_{v(\xi)}\left(V_{i}\right)=\nabla(\xi)-\left[x-V_{i}\right] \nabla(\xi)$ ($\mathrm{i}=1,2$). Clearly, $\mathrm{H}_{\mathrm{i}} \in \mathrm{CZ}(\boldsymbol{v}(\mathfrak{F}), w(\mathfrak{F}))$ and $H_{i} \cap(v(\mathfrak{F})-X)=$ $=G_{i}(i=1,2)$. Evidently, $z_{i} \subseteq v_{i} \subseteq O_{V(\xi)}\left(v_{i}\right) \subseteq H_{i}(i=1,2)$ and $H_{1} \cap H_{2}=\varnothing$. Let $D^{\prime}=\cdot \nabla(F)-\left(H_{1} \cup H_{2}\right)$. We have $D^{\prime} \epsilon$ $\epsilon Z(\boldsymbol{F}(\mathcal{F}), w(\mathcal{F})), D^{\prime} \cap(\boldsymbol{F}(\mathcal{F})-X)=F$ and hence by Proposition $0.4,\left[D^{\prime} \cap X\right]_{v(\beta)}=D^{\prime}$ and $D^{\prime}=D \cup F$, where $D=D^{\prime} \cap x$. By Propositiom $0.3,[D]_{v(\mathcal{F})}=\nabla(D, Z(D, w(\mathcal{F})))$ and hence $F=$ $=v(D, Z(D, w(\mathcal{F})))-D$. Clearly, $D \in \mathcal{F}, H_{i} \cap x \in C \mathcal{F}, z_{i} \subseteq$ $\subseteq H_{i} \cap x(i=1,2),\left(H_{1} \cap x\right) \cap\left(H_{2} \cap x\right)=\varnothing,\left(H_{1} \cap x\right) \cup\left(H_{2} \cap x\right)=$ $=x-D$ and by the induction hypothesis, $R-I(D, w(\mathcal{F})) \leq$
$\leqslant I(F, w(\mathfrak{F})) \leqslant n-1$. Thus $R-I(X, w(\mathfrak{F})) \leqslant n$.
b) $I(v(\boldsymbol{F})-X, w(\mathfrak{F})) \leq R-I(X, w(\mathcal{F}))$.

Let $R-I\left(X, w\left(F^{r}\right)\right)=k$. For $k=-1$ the result is trivial. We assume its validity for $k \leq n-1$ and suppose $k \leqslant n$.

Let $Z_{1}, Z_{2} \in Z(v(\mathcal{F})-X, w(\mathcal{F}))$ and $Z_{1} \cap Z_{2}=\varnothing$. There are $Z_{i}^{\prime} \in Z(v(\boldsymbol{F}), w(\boldsymbol{F}))$ with $Z_{i}^{\prime} \cap(v(\boldsymbol{F})-X)=z_{i}(i=1,2)$ 。 Let $Z=Z_{1}^{\prime} \cap Z_{2}^{\prime}$. Clearly, $Z \in \mathcal{F}, X-Z \in C F, x-z$ is dense in $V(\mathcal{F})-Z$. It should be observed that each $Z(X-Z, w(\mathfrak{F}))$-mapping from $X-Z$ into R has an extension to a $\mathrm{Z}(\mathrm{v}(\boldsymbol{\Im})-\mathrm{Z}, \mathrm{w}(\mathcal{F})$)-mapping from $\mathrm{v}(\boldsymbol{F})-\mathrm{Z}$ into R. This shows that by Proposition $0.2, \nabla(X-Z, Z(X-Z, w(\mathcal{F})))=$ $=\mathrm{V}(\mathrm{\nabla}(\mathfrak{F})-\mathrm{Z}, \mathrm{Z}(\mathrm{F}(\mathcal{F})-\mathrm{Z}, \mathrm{w}(\mathfrak{F}))) \cdot \mathrm{V}(\mathfrak{F})-\mathrm{Z}$ is realcompact with respect to $w(\mathcal{F})$ and hence $v(\mathcal{F})-Z=v(X-Z, Z(X-$ - Z,w(F))).

Evidently,

$$
\begin{equation*}
\nabla(X-Z, Z(X-Z, w(\boldsymbol{\sigma})))-(X-Z)=v(\boldsymbol{\sigma})-X \tag{1}
\end{equation*}
$$

Clearly, $Z_{i}^{\prime} \cap(X-Z)=F_{i} \in Z(X-Z, w(\mathcal{F}))(i=1,2)$ and $F_{1} \cap F_{2}=\varnothing$. There are $F \in Z(X-Z, w(\mathcal{F})), O_{1}, 0_{2} \in C(X-Z, w(\mathcal{F}))$ with $(X-Z)-F=O_{1} \cup o_{2}, o_{1} \cap o_{2}=\varnothing, F_{i} \subseteq o_{i} \quad(i=1,2)$ and $R-I(F, w(\mathcal{F})) \leq R-I(X-Z, w(\mathcal{F}))-1$. $X-Z \in C \mathcal{F}$ and hence, as in Lemma 1.4, $R-I(X-Z, w(\mathcal{F})) \leqslant R-I(X, w(\mathcal{F}))$. Finally, we have $R-I(F, w(\mathcal{F})) \leqslant n-1$. By Lemma $1.5,[F]_{\nabla}(\mathcal{F})-Z$ separates $\left[F_{1}\right]_{\nabla(\mathcal{F})-Z}$ and $\left[F_{2}\right]_{\nabla(\mathcal{F})-Z}$. Then $D=[F]_{v(\mathcal{F})-Z} \cap$ $\cap(v(\mathcal{F})-X)$ separates Z_{1} and Z_{2}. Finally, as it is shown in the part a) of this proof, $D=v(F, Z(F, w(\mathcal{F})))-F$ and by the induction hypothesis, $I(D, w(\mathcal{F})) \leq R-I(F, w(\mathcal{F})) \leq n-1$. Thus by (1), $I(\nabla(\boldsymbol{F})-X, w(\boldsymbol{F})) \leq n$.

Remark 1. It should be observed that the dimension
$R-I(X, Y)$ satisfies conditions which are similar to the countable sum theorem (theorem 1.2) and Lemma 1.4 respectively. On the other hand, $R-I(X, Y)$ is not monotone in general.
2. Inductive dimensions Ind X and ind X

Definition 2.1. Ind $X=I(X, X)$, ind $X=i(X, X)$ and $R-\operatorname{Ind}_{0} X=R-I(X, X)$.

Theorem 2.1. Ind ${ }_{0}$, ind ${ }_{0}$ and R - Ind are topological invariants.

Proof is trivial.
Theorem 2.2. ind $X \in$ Ind $_{0} X$.
Proof follows from the theorem 1.8.
Theorem 2.3. ind $X=\inf \{i(X, Y), X \subseteq Y\}$ 。
Proof follows from the theorem 1.4.
Theorem 2.4. If $X \subseteq Y$, then ind $X \leq i n d_{0} Y$.
Proof. By Theorem 1.4, ind $X \leqslant i(X, Y)$; by Theorem 1.3, $i(X, Y) \leqslant i(Y, Y)=$ ind $_{0} Y$. Thus ind $X \in$ ind ${ }_{0} Y$.

The similar results (Theorems 2.3 and 2.4) are not true for the dimension Ind ${ }_{0}$

Theoren 2.5. If $X \subseteq Y$, then $I(X, Y) \leq$ Ind Y_{0}. In particular, if X is z-embedded in Y, then Ind $X \leq I n d_{0} Y$.

Proof follows from the theorem 1.1 and Lemma 1.1.
Corollary 1. If G is a cozero-set in X, then Ind $G \leqslant$ \leq Ind X_{0}

Theorem 2.6. If X is the countable union of zero-set subsets $\left\{z_{i}\right\}_{i=1}^{\infty}$ with $I\left(Z_{i}, X\right) \leq n$ for all $i=1,2, \ldots$, then

Ind $X \leqslant n$. In particular, if each Z_{i} is z-embedded in X and Ind $Z_{i} \leqslant n$, then Ind $X \leqslant n$.

Proof follows from the countable sum theorem and Lemma 1.1.

Theorem 2.7. Ind ${ }_{0} X=$ Ind $_{0} \nabla X$, where ∇X is the Hewitt realcompactification of X.

Proof follows from Theorem 1.7 and Lemma 1.1.
The following corollary gives a positive answer on the question 2 from [9] for pseudocompact spaces.

Corollary 2 [10]. If X is pseudocompact space, then Ind ${ }_{0} X=$ Ind $_{0} \beta X$ (βX is the Stone-Cech compactification of $\mathrm{X})$.

Theorem 2.8. If the Hewitt realcompactification $\mathbf{V X}$ of X is Lindel $8 f$, then ind $\nabla X=$ Ind $_{0} \nabla X$.

Proof is similar to the Smirnov's theorem: ind $\beta X=$ $=$ Ind $\beta \mathrm{X}$ for perfectly normal $\mathrm{X}[11]$.

Corollary 3. If X is Lindel8f, then ind $X=$ Ind $_{0} X$.
Theorem 2.9. $R-$ Ind $_{0} X=I(\nabla X-X, \nabla X)$.
Proof follows from Theorem 1.9 and Lemma 1.1.
Corollary 4. If $\nabla X-X$ is z-embedded in ∇X, then $\operatorname{Ind}_{0}(\nabla X-X)=R-\operatorname{Ind}_{0} X$.

Coroliary 5. If X is a pseudocompact space satisfying the bicompact axiom of countability [12], then ind $(\beta X-X)=$ $=R-\operatorname{Ind}_{0} X=\operatorname{Ind}_{0}(\beta X-X)$.

Theorem 2.10. If $X=A U B$, then Ind $_{0} X \leqslant I(A, X)+I(B, X)+$ +1 and ind $X \leqslant i(A, X)+i(B, X)+1$.

Proof follows from Theorems 1.5 and 1.6.
It is shown in [13] that for each non-negative integer n there exists a comple tely regular space X^{n} with $X^{n}=X_{1}^{n} U$ $U X_{2}^{n}, X_{1}^{n}$ and X_{2}^{n} are the zero-sets of X^{n}, dim $X_{i}^{n}=0(i=$ $=1,2$) and $\operatorname{dim} X^{n}=n$ (dimension dim is defined as in [14]). This example shows that "Urysohn Inequality" - Ind $(A \cup B) \leq$ \leqslant Ind $A_{0}+$ Ind $_{0} B+1$ does not hold in general (indeed, for an arbitrary completely regular space X we have: dim X

Ind X_{0} and "dim $X=0$ if a rd only if Ind $X=0$ ").
The following theorem gives a positive answer on the question 3 from [9] for pseudocompact spaces.

Theorem 2.11. For each pseudocompact space X with $\omega X=\tau$ and Ind $X \leqslant n$, there exists a compactification $b X$ of X with $\omega b X=\tau$ and Ind ${ }_{0} b X \leq n$.

Proof follows from Corollary 2 and from the following
Theorem [15]. If f is a continuous mapping from a bicompact X into a bicompact Y, then there exists a bicompact Z, continuous mappings $g: X \rightarrow Z$ and $h: Z \longrightarrow Y$ such that $f=$ $=h g, \quad$ Ind ${ }_{0} Z \leq$ Ind $_{0} X, \omega Z \leq \omega Y$.

Definition 2.2. We call a mapping $f: X \rightarrow Y$ a zeromapping if $f(Z)$ is a zero-set of the space Y for each zeroset Z of the space X.

The following theorem generalizes the well-known Hurewitz Theorem [16].

Theorem 2.12. Let f be a continuous zero-mapping of a space X onto a space Y such that the inverse image $f^{-1}(y)$ consists of at most $k+1$ points for each point y of Y.

Then we have Ind $Y \leqslant$ Ind $_{0} X+k$.
Proof is such as in [17].
Finally, we have the following generalization of the Alexandroff's theorem [18].

Theorem 2.13. Let f be a continuous cozero-, zero-mapping of a bicompact X onto a bicompact Y such that the inverse image $f^{-1}(y)$ consists of at most countable points for each point y of Y. Then we have Ind $X=I_{0} X_{0}$.

Proof is such as in [19] (notion of a cozero-mapping is defined as in the definition 2.2).

Remark 2. It should be observed that the dimensions Ind ${ }_{0}$ and ind ${ }_{o}$ are equal to the dimensions Ind and ind respectively in the class of perfectly normal spaces.

References
[1] A.CH. CHIGOGIDZE: Relative dimensions for completely regular spaces, Bull. Acad. Sci. Georgian SSR 85(1977), 45-48.
[2] A.CH. CHIGOGIDZE: On the Wallman realcompactificatioms and dimensions of increments of completely regular spaces, Bull. Acad. Sci. Georgian SSR 87(1977) (to appear).
[3] A.K. STEINER and E.F. STEINER: Nest generated intersection rings in Tychonoff spaces, Trans. Amer. Math. Soc. 148(1970), 589-601.
[4] R.A. ALO and H.L. SHAPIRO and M. WEIR: Realcompactness and Wallman realcompactification, Portugal. Math. 34(1975), 33-43.
[5] H. GORDON: Rings of functions determined by zero-sets, Pacific J. Math. 36 (1971), 133-157.
[6] A.W. HAGER: On inverse-closed subalgebras of $C(X)$, Proc. London Math. Soc. 19(1969), 233-257.
[7] C.H. DOWKER: Inductive dimensions of completely normal spaces, Quart. J. Math. 4(1953), 267-281.
[8] R.N. OPMOTSADZE and A.CH. CHIGOGIDZE: Inductive dimensions for zero-set spaces, Bull. Acad. Sci. Georgian SSR 81(1976), 301-304.
[9] A.V. IVANOV: On the dimension of incompletely normal spaces, Vestnik Mosk. Univ. 4 (1976), 21-27.
[10] A.CH. CHIGOGID'LE: On the pseudocompact spaces, Bull. Acad. Sci. Georgian SSR 86(1977), 25-27.
[11] IU.M. SMIRNOV: Some relations in the dimension theory, Matem. Sbor. 29(1951), 157-172.
[12] IU.M. SMIRNOV: On the dimension of increments of bicompact extensions of proximity spaces and topological spaces, Matem. Sbor. 69(1966), 141-160.
[13] J. TERESAWA: NUR and their dimensions, Notices Amer. Math. Soc. 24(1977), A-262.
[14] R. ENGEIKING: Outline of General Topology, Amsterdam, 1968.
[15] A.G. NEMETS and B.A. PASYNKOV: On two general approaches to the factorization theorems in the dimension theory, Dokl.AN SSSR 233(1977), 788-791.
[16] W. HUREWICH and H. WALLMAN: Dimension Theory, Princeton, 1941.
[17] K. MORITA: On closed mappings and dimensions, Proc. Japan Acad. 32(1956), 161-165.
[18] P.S. ALEXANDROFF: On the countably-order open mappings, Dokl. AN SSSR 4(1936), 283-286.
[19] B.A. PASYNKOV: On the open mappings, Dokl. AN SSSR 175 (1967), 292-295.

```
Department of Mechanics and Mathematics
Tbilisi State University
380043 Tbilisi
Georgian SSR
USSR
```

(Oblatum 7.6. 1977)

- 637 -

