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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
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ON THE SPACE AND DUAL SPACE OF FUNCTIONS REPRESEBTABIE BY
DIFFERENCES OF SUBHARMONIC FUNCTIONS

)

Urban CEGRELL®’,Uppsala

Abstract: The linear space of differences of subhar-
monic functions is given a Fréchet space topology. This
space together with its dual space is studied. A decomposi-
tion theorem for functionals vanishing on the harmonic func-
tions is given and the functionals which are carried by one
point is determined. It follows that, in the subharmonic ca-
se, the stable polar set always is countable.

Key words: Subharmonic function, Fréchet space, posi-
tive Tunctional, polar set of a function. ’

AMS: 31BOS Ref. Z.: 7.58

1. Introduction. Let U be an open subset of I{Iq, n2z2,
and denote by SH(U) the subharmonic functions on U. In this
paper we study the linear space o'SH(U), of functions which
can be written as a difference of subharmonic functions. This
subject has been treated by Arsove [1] and Kiselman [ 31, We
shall also study its dual space J"SH’(U) here.

The corresponding function spaces made up by differences

of convex or plurisubharmonic functions have been studied by

Kiselman [3) and Cegrell [(2].
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2, O'SH(U) and JSH’(U)., &SH(U) is a Fréchet space
with topology given by the seminorms [ gl o = inf (.& (@1, +
+ |g’|2 Y =91 - P Py Pp€SH(U)), Kcc U, For a proof
of this, see Schaefer [4], p. 221.

An equivalent topology on J'SH(U) is given by the semi-
norms

Mg llly = ine ({rl 91+l 9=, ~9,, 9,9, ¢

& SH(U"))
where U’ is open and relatively compact in U.

That ¢“SH(U) is complete under this topology is a conse-
quence of Theorem 2.1, Moreover, [li«lll;;, gives a weaker to-
pology than I . ﬂK and since both turn J“SH(U) into a Fré-

chet space, they are equivalent.

Theorem 2,1. If g e i, (U) and if |y & o"SH(U') for

every U’ open and relatively compact in U then ¢ e d SH(U).
Proof. Arsove [ 1] Theorem 10.

Definition. A compact subset K of U is said to e a
carrier for w € o"SH’(U) if to every open U’ containing K
there is a constant ¢ such that

lal@)leclgly, Vg e dsau).
Definition. A subset K of U is said to be a support for

@ e &°SH(U) if, for any open O withKc c O , « vanis-
hes on those functions in J"SH(U) which vanish on UN O .

Definition., E is a notation for the fundamental solu-

tion to the equation Af = & in R when d, is the Di-

rec measure at gero
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%3-', loglzl, n=2
E(z) =
cn —Tﬁi:z' n>2,
Corollary 2.2. Every @we Jd'SH(U) has a compact support.
Proof. ILet B be a carrier for w and choose U’ open
with Bcc U’c c U, Then there is a constant ¢ >0 8o that
wl ()l ge ﬂgﬂu, Y @ e O°SH(U). Since an equivalent topo-
logy on JSH(U) is defined by the seminorms [ll |l there is
a constant 4 and an open u’’ relatively compact in U so that
loly£a llolly V@e ISH(U), Henee |wl(g)l &
cc.a lglly, Vg e o’'SH(U) so if ¢ €& 0“SH(U) with
‘f'uu = 0 then «(9) = 0, which means that U’" is a support
for « .

Corollary 2.3. wsum”)\u is dense in d'SH(U).

Proof. By the Hahn-Banach theorem it is enough to prove
that if @& O"SH’(U) vanishes on JSH(Rn)lU then @ = 0.

So let @ € ¢"SH(U) and «w e Jd'SH’(U) vanishing on JSH(R”)[U

be given. Choose O ¢ D(U), O & © £1 with € = 1 near a com-
pact support A, for w . Then ¢ ~E # 8 A @ is subharmonic
on U and harmonic near A, So there is a ¥ ¢ & CVX(R") with
¥ =¢9=-E*x0A¢® near A. (See Kiselman [3].) Hence

0= w(y) = wulp-Ex0A0¢ ) = wlg)
since E « A @ € SH(R™),
Theorem 2.4. Assume that «w e J'SH'(U) and that A and B

are compact supports for @ . Then AN\ B is a support.
Proof. Given U; open and q ¢ J"SH(U) vanishing near 53
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where AN BccUBCCU. We have to prove that w(¢) = O,
Choose U, open so that Bcc Uy; TN 4N €Uy = @. Choose U,
open 8o that BccUjcc U, md 6, € -’D(UZ) with €, =1
near fJ.l. Then ¢ = E % 6,40¢ + h near U; where h is harmo-
nic near 1-11 and where E x 6 A @ is harmonic on an open set
Uy such that AccU,ccU; U N1, neuy = 4.

Choose now 60, € D(Uy); &, = 1 near I_Ii_ 80 that
6,:he J'CVX(R™) and 8¢ @(U4), @3 = 1 near A. Then
O, Ex8,09c¢ " CVX(R™) and we define f,g e J"CVX(R ™)
by

£=6,:" 63-h; g=0;-Ex8,09 -

On UyNU; we have g + £ = B3E*x 8,4 ¢ + @3.n = 839 =0
since ¢ vanishes on U; and since 63 =0 on UlnerB, g+

+f=0o0n Ul which contains B. Hence

0= w(f+g)= wuE *91A9> + Gznh) = (u,(<p)
since 92 = 1 near 'ffl and the proof is complete.

Remark. Theorem 2.4 and Corollary 2.2 prove that every
€ J'SH’(U) has a smallest compact support.

A

Definition. Let K be a compact subset of U, Then K is

defined by

A
K={zeU; cy(z)égzép’( () Vo e SH(U}

lemma 2,5. Let K be compact in U. Then 4 is compact in
U. Given € >0, and U, an open neighbourhood of ﬁ. Then the-

re is a continuous and subharmonic function ¢ on U such that

A
@ =0onKam ¢2¢ on €Up.
Proof. Consider ﬁc ={zeU; 9(z)ésap ¢ Vg e SHUN
NC(U)}. It is clear that Kc Kc ﬁ, and if z € 3 U
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- E(z - zo)’?“epu L-B(§~-2,)] for |z - z°\< a(K,Ccu)

8o it follows that ﬁc is compact in U,

We claim that K = ﬁc' If zléﬁ then there is a ¢ €
€ SH(U) with ¢ (z,)> sup @ . Choose ¢ ,€ SH(U)NC(U) so
that @, ™ ¢, € % 0 on a compact set containing z, and K

in its interior. Then there is an so that sup 9‘0 €

£o
A
é% (@ (zq) + skxp @ ). But ?eo (z9) 2 @ (z9) 80 z16 K,
To a given open set U; with R cclUyccU it is easy to
see that there are finitely many functions <¢p;e€ SH(U)N C(U),

14£i4m with 4‘sx‘g’pémcpi=00nﬁand4sup @;Z1lon ‘EUl.

Proposition 2.6. Let K be a carrier for wé d"SH'(U).

Then ﬁ is a support for " .

Proof. lLet K be a carrier for we d"SH'(U) with K = K,
Choose an open set U, so that ﬁcculcc Ueand let g e d"SH(U)
with cy’U1 = 0 be given. We have to prove that (@) =o0.

Since

‘?=‘91‘9’2=‘1’1’E“’Cu4“?1‘

- (g, ~E & 7(,U1A %)
we have a representation ¥, and Yy, of ¢ where vy, and
¥ , are continuous near K. Using Lemm 2.5 we can find an
open set Uy, KccU,cc U, and a continuous subharmonic func-

tion ¥ 8o that

>s8su - Y
au;" , 2

su & inf -
wY e ¥2
3 3
where KccC U3 cc U2 80 it follows that
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y(z), 2 &U,
g(z) = 4{ is continuous on U and

sup (4 - ¥,), ze U,
subharmonic near <«U,.
Now @, = v, +g, @, = ¥, + g are subharmonic on U

and 61 - 62 = @ 8o since K is a carrier for @ we have
lale) |l & jejl+18, 0 =0
¢ly %, {,3 1 2

and the proof is complete.

Corollary 2.7, Let ¢ be a non-vanishing element in
d"SH(U). If A and B are carriers for w then An ﬁ#ﬂ.

3., Positive functionals on J'SH(U)

Definition. Denote by J'SH/(U) the set of elements in
d'SH’(U) which only takes non-negative values on SH(U).

Remark. Any real-valued linear map which is defined on
Jd"SH(U) and which is non-negative on SH(U) is continuous (see
Proposition 1.1 in Cegrell [2]). In particular, we have the
following

Lemma 3.8, Let K be a compact subset of U. Then
I SH(U) » @ —> A g {K} (=j;Aqa )
is an elememt in d'SH’(U).

Theoren 3.9. (6 ¢ SH'(U). Then the following condi-
tions asre equivalent.
1) @ = My - @, where @y, @€ ISH(U);
2) there is a compact subset, K, of U such that (g ) va=
nishes for all ¢ € &' SH(U) which are harmonic near K;
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3) @ vanishes on the harmonic functions;
4) there is a compact subset, K, of U and a constant ¢ so

that I(&(q)léc&Ag: Vg e SH(U),

Proof. 1) =52). If me I SH (U), let K be a carrier
for w . Then Ris a support for ¢« by Proposition 2.6. Gi-
ven @ & J"SH(U) which is harmonic near R we can construct
91» §,6 SH(U) so that @, = -@, =@ near K. Hence
0é& w(qgy) = w(g) = «(-9,)£0 80 wlg) = 0.

2) ==3) is trivial,

3)=>4). Denote with M(U) the Fréchet space of measu-
res on U with topology defined by seminorms It g = total
mass of £ on K, Kcc U,

ILet ¥ a(U) be a notation for the harmonic functions on
U, which form a closed subspace of J"SH(U)., Let now j be a
notation for the mapping

SSHU)/Ha(U) 5 @ +ox A g ¢ M),

That j is continuous follows from Lemma 3,8, Furthermore, j
is a bijection so .j-l is continuous since both d SH(U)/3 a(U)
and M(U) are Fréchet spaces.

Now since @ = 0 on ¥ a(U) we have
i v d’sH(u
|@(q)l£ch‘%m)|\9+hl\x ®ec )

for a fixed constant ¢ and compact set K. But j'l is continu-

ous so there is another constant d and another compact set L

in U so that
L Yoe dsuw).
ke%(ﬂ) g+ nlgéd 9.13,{% .Z‘A?l +thp, Yge )
%1956 SH(L)

In particular, (u.(q)lic-d&Aq Y ¢ ¢ sE(U).
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)=1). (@wle) = c_fKAgp + wlg) - chAc_/,a is the

desired representation,

4, Functionals on SH(U) carried by one point. We shall
now determine all functionals W € J'SH’(U) which are carried
by one point z e U. We can of course restrict ourselves to
the case z, = O. Then, if @ is carried by the origin, « is

also supported by the origin., Let B denote fz;lzl< 1}.

Lemma 4.10. let ¢ ¢ SH(B) and assume that ¢ is bounded

below in & neighbourhood of zero. Then (u,(q ) =0 Yu €

€ &'SH (B) which are carried ty zero.

Proaf. Given g e SH(B) bounded below near zero. Assu-
me first that @ £ O on {z; 2] £ r}? where O<r<l. If we
put

1 Z
sup (=% log |= ), lzlér
ne lrl"f ’

¥n =

i?hgl’xz‘l' lzl>r
it follows that vy, e€SH(B) and W, = ¢ near zero.

N
Put By = p?q‘lfr’, . Then (M>N)
M
1oy - Oylw = fy I,E‘} 1}",,, &

M
‘(f3 \log If:'“ ')":NZ” ;];-2-——’0, min (M,N)—> + 0©

for every B’ relatively compact in B.
So it follows that e“ converges to a limit & ¢ J SH(U).
Now w(®) =N_I|‘i..x’n“° ®(8y) =“1‘_i’t‘ N w(@) which gives
= 0. If this t - su the lemma fol-
wlg) =0 we apply this to g lzl<p~‘!q e

lows.
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Definition. Let sz(U) be the functions in J'SH(U) which
have a representation @ = ¢, - @, where @, + @,(z)>-w
and let ¥,(U) denote the closure of s,(U) in O SH(U).

Lemma 4.11. Let w e J'SH'(B) be carried by zero. Then

“(g)=0 Voge .
Proof., It is enough to prove that if Q€ SH(B) with
9(0)><~ @ then w(g) = 0. Choose 8, € @ (B), 04 @<

€1, 8, 26 .., 8, =1 near zero, m'];i’mwen = 0 outside ze-

ro. By Theorem 3.9 and Lemma 4.10 there is a constant c so

that
l(u.((;)l = I(“,(E*SnAqa)l & ch enA?—" 0, n—»oo
since cf(o)> -0 .
Definition. Denote by T,(¢ ) the functional

JSH(B) s o > Ag {2z} (= [ Ao ).
iz}
Lemma 4.12. To(g’) = 0<==d> Q@ & ':fo.

Proof. <= ) Clear by Lemma 4.11.

==») Choose Gn as in the proof of Lemma 4.11 and as-

sume that ¢ = &) - g, ¢ d'SH(B) with T, ( g:l) = To(@,). Then
E«8,4¢,7E. T,(¢4)y, n— + 0

Ex8,A¢,E- T (¢,), n—s + 00 .

¥ = 9 ~E-T,(¢,), then ¥,, ¥,€SH(B),
V2 = 92 - B To(pp)

9=¥1- ¥, end

¥yl =9, -E+6 Ay,6s, neN
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¥5=Y¥,-Ex8 Dy,es, nelN .
For every compact subset K of U we have
Vg - v, - (rl -yl clEx o Ayl o+
+ NEx@ By, Mg f (B-T(p) - Ex 8,4 ¢)dz +
+ J(BrT(g)) -E4x 8, Agy)dz—0 n—>+m , which

means that ¢ € ‘.'!o.

Theorem 4.13. lLet we Jo"SH’(B) be carried by zero.
Then

@(9) = w(E): T (gq) V¢ € & SH(B).

Proof. If T,(¢) =0 then ¢ ¢ ¢ by Lemma 4.12 and
we have (@) = O by Lemma 4.11. Thus @ = & - T  for some

constant &« and since TO(E) = 1 the theorem follows.

Remark. The notation of polar and stahble polar set for
plurisubharmonic functions were introduced in Kiselman [3].

The polar set of a function f e d'SH(U) is
pola

P(f) = "f\fz (Lz6U; (£ + £,)(2) = ~w}; £ =2, - £,,
£1,£, € SH(U))

and the stable polar set of f is

P, (£) = g ;}w P(g) (@ varies over the neighbourhood of £).

Now, Py (f) ={zeZ; T, (f)% O}Vl‘mt {zeU; T,(£)$0} is a

countable set so it follows that the stable polar set of any
function fe d SH(U) is countable.
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