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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

18,4 (1977) 

TOPOLOGICAL SPACES WITHOUT ae -ACCESSIBLE DIAGONAL 

M. HU§EK, Praha 

Abstract: Spaces wnich may replace in factorization 
situations spaces with (*n -diagonal are investigated. Pro
blems in special cases are connected with (I N and metri-
zability of compact spaces. 

Key words; dt -accessible diagonal, factorization of 
maps on products, cardinal functions, metrizability. 

AMS: 54F99, 54D30, 54135 Ref. 2. 3.961 

The following definition was motivated by results con

cerning factorization of maps on products of spaces. Some 

basic fact8 and ideas may be found in LHu-,1. 

Definition. We shall say that a topological space X 

has a (weakly) *ae -accessible diagonal if there is a net 

4 a- | £ •< 9e$ in Xx X - A x (weakly) converging to diago

nal A x. 

The fact that X has not (weakly) ae -accessible dia

gonal is denoted by ae € A X (*e e A X, reap.). Thus 9e € 

e A X (or «e 6 5 X) iff for any net (a- I | -< 9e ? inXxX 

- A , there is a cofinal set C in & and a neighborhood U 

of A x in XxX such that Un-(a. | ^ e C ^ * 0 

(U r\{ m^ \ f C C$ » 0, resp.). 

Since it e A X iff cof ae c A X (the same for AX), 
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it suffices to restrict a consideration to regular cardi

nals; for them, ae e A X ( a e e A X ) iff for any H c X x X 

with IM - A x I * ae there is a neighborhood U of A x in 

Xx X with | M - U | » 9 e ( | M - U | * 9 C , resp.). 

The spaces without *e -accessible diagonal ( «e regu-

lar) generalize spaces X with y ( A x , X x X ) < ^e (e.g., if 

X has a 0 ^ -diagonal (or ^--diagonal), then o)j,€ A X 

( <*>2 e & xt resp.)). 

S. van Douwen after discussion with the author about 

spaces X with o)^ e A X (Amsterdam 1975) called them "spa

ces with small diagonal". In the meantime, the author used 

in several lectures (also in [Hup-) the terms "D-spaces, 

D-j-spaces" for X with o> e A X, co-* e A X. In this time we 

are convinced that the term "spaces without 9e -accessible 

diagonal*1 is more justified. 

After stating general results we shall restrict our 

consideration to the cases ae = co , ae =- o>, • In the sequel, 

a topological space always means a Hausdorff one, ae deno

tes a regular infinite cardinal. We shall omit Xx X in 

y ( A x , X x X ) and similar expressions. 

--• Observations. (1) y ( A x ) < -ae—> see AX. 

(2) (̂Ax) * y(^x
) s ^ ^ * ^ x * 

(3) aee AX—> ae£ {«G | oc * y ( x ) * ^ (x) for some 

X € X f . 

(4) If X is compact then (2) and (3) means: ae = wX 

or aee -£ y ( x ) | xcX$ —> ue ̂  A X. 

(5) AXcAX. 
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The converse implications in (1) - (4) do not hold 

even for compact X (for ae * uj one may take /£H in (I) 
CO. 

and 2 1 in (4)). In (5) the equality holds if A % has a 

base of closed neighborhoods, which is true e.g. if all 

neighborhoods of Ay form a uniformity. 

Proposition 1* The class of spaces without «*> -acces

sible diagonal is hereditary, X -productive for any X *- zt , 
and the property is preserved by taking larger topologies. 

?e Clearly, 2 has se-accessible diagonal and hence, 

we cannot pttt X = $e in Proposition 1. 

In the sequel we shall use the term " ̂ e-compactness" 

in the following meaning: any subset of cardinality at lesst 

ae has an accumulation point (i.e., any closed discrete 

subspace is of cardinality less than ae ). Any ae-compact 

spaces is pseudo- ae -compact in the sense of Isbell* The 

concept corresponding to pseudo-( ̂ e,X )-compactness is 

( ee,X )-compactness here: any subset A of cardinality at 

least se has a X -accumulation point x (i.e., for any neigh

borhood U of X, I Ur> A I £ X ). 

Theorem 1. If X is a $e -compact space, then it has 

not ^e-aceessible diagonal iff any continuous f: TT X• — *• 

—• X, TT Xi ae -compact, depends on less than ae coordi

nates. 

Proof. Suppose first that ?t€ /1X, TT Xi is ae-com

pact, f: TT X^—> X is continuous not depending on less 

than ae coordinates. Then t i i e I I fxi* fyi for some x^t 

^i £ V \ with prI-(i)xi = prI-(i)yi * ' ~ ̂  denote this 
subset of I by J). There are a neighborhood U of A x and 
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a J'c J with 1 J'l * ae , 4<fxi,fyi> | i e J ' J n U - 0. 

Let x be an accumulation point of 4 xi 1 ie J } in TT X. f 

V its canonical neighborhood such that f(V)x f(V)cU. The

re is an ie J' such that x^e. V, pri(V) = Xi; consequently, 

y ie V, and < ^x±f^±^> € u, which is a contradiction. 

Suppose now that -&e# A X, i.e., there exists a set 

A = -K x^ ,y^ >l ̂ < 3e ? in X x X - A „ converging to 

A x. Put X , to be the set A u Ayr with the following topo

logy: A is an open discrete subspace of X_-., neighborhoods 

of points from A« are traces on X , of their neighbor

hoods in Xx X. It is almost self-evident that X , is *e -

compact. Now, X ,x 2 ^ is -ae-compact and the following 

map f :X ,-x 2 ^ — > X is continuous and does not depend on 

less than ae coordinates: 

-*«*c,yc > »*
k
? *?<*e

} = ' 
x c if kc = 0t 

yç if k c = 1, 

f í < м > , í y f < í Є ) =x. 

In the first part of the proof, ae -compactness of X 

was not used, but we must realize that by investigating 

factorizations of f we are interested only in f( TT X
i
) . 

Hence, the restriction on X in Theorem 1 is no restriction 

if we want TT x
i
 to be ae-compact. 

The most general condition which may be posed on 

TT X
i
 in the above factorization theorems is pseudo- ae -

compactness (tNU3 for uncountable ae , '*
Hu
i^

 f o r & m °>)* 

In that case the situation is more complicated, and we know 

only the following result: 
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Theorem 2. Each of the following conditions implies 

the next one: 

(1) X has not weakly ae-accessible diagonal (i.e., ae e 

e AX). 

(2) Any continuous f: TT X^—^ X, TT X^ pseudo- ae -com

pact, depends on less than ae coordinates. 

(3) X has not ae-accessible diagonal (i.e., -ae e AX). 

Proof is similar to the preceding one. (See IHu^l for 

details of (1) «-=-> (2).) To prove (2)-=--=>(3), one may take 

in the proof of Theorem 1 the subspace A u d n A^) of X , 

as the new X^; if A converges to A x, then this new X_, 

is pseudo- ae -compact. The remaining procedure is the same. 

The implication (2) «=*-.> (l) is not true in general. 

Clearly, if AX » AX, then all the three conditions are 

equivalent. We do not know whether (3) —& (2) (in fact, we 

do not know any example of a pseudo- ae -compact space X 

with aee AX - Fx). 

In the second part of the proof of Theorem 1 we used 

the index set of cardinality ae ; in such a case we may pro

ve more: 

Theorem 3. If X has not ae-accessible diagonal, then 

any continuous map f:Y—> X, where X is a (ae, ae)-compact 

subspace of a ae-fold product TT Xr , depends on less than 

ae coordinates. 

Proof. Suppose that an f from our theorem does not de

pend on less than ae coordinates. Then we can find points 

x- ,ŷ  in Y for | -< ae with pr„, x^ » pr^ y for all ̂  e € 
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and fx. =|s fy . Thus for a cofinal C in ae and a neigh-

bcrhood U of A x we haw U A { < f x . ,fy^ > 1 f ft C | « 0. 

L«»t xeT toe a ^-accumulation point of -CXg ( f € C J , V 

its canonical neighborhood such that f (Vn X)x f (Vn I)c U. 

There is a £ e C such that x^ € V and pr^ V « X_ provi

ded 'i| a | ; hence, ŷ  <• V - a contradiction* 

From the results of the second section we shall see 

that Theorem 3 is not valid for more than ae-fold products; 

if 2 « co1 , X « (3,12, then X may be embedded into £.0,13 

and the identity 1^ does not depend on countably many coor

dinates* 

It is not difficult to show that if X is compact, then 

^ee fix iff Xx X - A x is (ae,ae) -compact. 

At the end of the first part we shall remark that if 

X is a scattered compact space, then AX = LI XI ,—*v C . 

Indeed, if A is an infinite subset of X, x is a complete 

accumulation point of A with the least order, U is a closed 

neighborhood of x with U n { x ( order of xborder of x j B 

~ (x ), then UnA converges as a well-ordered net of type 

IA1 to x0. 

2. In this part we shall be interested in the case 

*e - a> # The earlier results have now simpler formulations, 

mainly for compact spaces: 

Theorem 4. The following are equivalent for a compact 

space X; 

(1) X has not o> -accessible diagonal. 

(2) X x X - & x i s countably compact. 
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(3) Any continuous map f: TX X^—> X, TT X. pseudocompact 

(or compact), depends on finitely many coordinates. 

(4) Any continuous map f:Y—i*X, where Y is a countable 

compact subspace of a countable product, depends on finite

ly many coordinates. 

If X has not co -accessible diagonal, then it has no 

convergent nontrivial sequence and, hence, nondiscrete met-

rizable spaces, infinite dyadic compact spaces, infinite 

Eberlein compact spaces, infinite scattered compact spaces, 

infinite supercompact spaces IWil have co -accessible dia

gonal. The space fi> N with doubled N has co -accessible dia

gonal and no convergent nontrivial sequence. 

It seems that for compact spaces, only finite ones ha

ve not co -accessible diagonal. The next result shows that 

there are many nontrivial compact spaces without a)-acces

sible diagonal. The result appeared in [Hu^l. 

Theorem 5* If any countable discrete set in a comple

tely regular space X is C* -embedded in X, then X has not 

weakly co -accessible diagonal. 

Proof. Suppose {< ^TI^TI * ^co c X x X " ^X* If one °* 

the points x^iyn appears infinitely many times, e.g. all XL 

equal to xQ, then for suitable neighborhoods U,V of x , 

Vc int U, U misses infinitely many of yn's> the set X x 

x (X - V ) U ( U K U ) is a neighborhood of A x the closure of 

which misses infinitely many of <• x^y** ) s» In tne other 

case we can choose a subsequence "*^Unfv
n)i of J ^ ^ n ^ n ^ 

such that the sets i^\ * A, 4 vn\ » B are disjoint and 

discrete in X; moreover, we may suppose that A u B is dis-
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crete (if Be A, then there is infinite A-^ A with I-̂ n B = 

* 0 because A is C* -embedded). Then A^X n B^X = 0 and, 

consequently, A^ x B^ is separated from A„x in 

fiXx (SX. 

It does not suffice to suppose that any countable sub

set of X contains a C* -embedded infinite subset: put X to 

be ft N with doubled N. 

There are compact spaces without co -accessible diago

nal containing a set having no C* -embedded (in X) infinite 

subset (e.g. the compactification of N from the Example 5.22 

tW3 obtained as a quotient of ft N along an idempotent per

mutation). 

Corollary. (1) If D is a discrete space, then no sub-

space of ft D has weakly co-accessible diagonal. 

(2) No extremelly disconnected 9pace has co -accessib

le diagonal. 

In (2) we may put basically disconnected or moreover 

F-spaces instead of extremally disconnected spaces. The 

class of spaces without o> -accessible diagonal is bigger 

than that of F-spaces because the former clas3 is finitely 

productive (or use the example jvst before Corollary). We 

do not know whether any compact space without co -accessib

le diagonal can be embedded into a countable (hence finite) 

product of F-spaces. 

Theorem 6. If X is an infinite compact space without 
a. 

C*>-accessible diagonal, then I X I 2. 2 n . 

Proof follows from a theorem of ceeh and PospfSil be

cause X contains an infinite compact subspace X without iso

lated points (since X is not scattered) and y (x,I) £ &1 

- 784 -



for any x e l . 

As follows from results in [M§1, the last Theorem can 

be improved under MA: If X is an infinite compact space 
i a 

without ^-accessible diagonal, then i XI S 2* . 

It is an open problem whether there exists a compact 

space of cardinality 2°* without co -accessible diagonal. 

We are not sure that one can use the Fedorfiuk's construc

tion of a compact space of cardinality 2 and without con

vergent nontrivial sequences. 

At the end of this part we want to stress the fact 

that if a compact space without co -accessible diagonal is 

embedded into a countable product, then it can be embedded 

into a finite subproduct. This result is related to a re

cent deeper but more special result by V. Malyhin (unpub

lished): If p N is embedded into a countable product then 

it can be embedded into one member of the product. 

3. The case «e « co ^ has in a sense "opposite" prob

lems than the countable case. We do not know whether there 

are nonmetrizable compact spaces without «->-,-accessible 

diagonal (or pseudo- ^^-compact spaces without both Ĝ y -

diagonal and co -^-accessible diagonal). This is important 

to know because up to now we do not know whether the fac

torization result in Theorem 1 is a generalization of the 

known result (the range has G^-diagonal). 

E. van Douwen proved that any compact linearly order

ed space without co,-accessible diagonal is metrizable, 

and D. Lutzer improved this for LindelBf instead of com-
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pact (oral communications). 

Under CH we are able to prove simi3ar results: 

Theorem 7. (CH) A compact space is metrizable iff it 

has not <-<•>.-accessible diagonal and one of the following 

conditions ho3Lds: 

(a) dX = co 

(b) tX s o> 

(c) wXi2Cc> o r | X l i 2 6 ) 

(d) |C(X) |62 6 ? 

Proof. Suppose X is a compact space without o>-̂ -ac-

cessible diagonal. Then (c) clearly implies metrizability 

of X. Since (a)-===> (d), it will suffice to prove that (d) 

implies metrizability and (b) —*> (a). Under (d), X-=—>tO,ll 9 

thus by Theorem 3, X <=—> 10,13 . Suppose now that tX » ca . 

If X is not separable, then there is a set A -4x ? | £ <: co-A 

such that x- ^ x- j ̂ < ^ } for all r^ <*• o>^. Since 

tX = a) , we have X s ^^^ (x- I f < ^ ? and, by preceding 

considerations, all (x. j £ < ^ ? are metrizable. Hence 

I A \ 4 2 and X is metrizable , hence hereditari3y separab-

3e - a contradiction. 

Questions. (1) Is there a compact nonmetrizable space 

without co,-accessible diagonal? Under CH, this question 

is equivalent to the following one: Is there a nonmetrizab

le compactification X of the discrete space <*>•» such that 

X has not <«), -accessible diagonal? (Any separab3e subspace 

of X must be metrizable.) 

If one can prove that any compact space without <*)-,-

accessib3e diagonal is first countable, then it is metriz

able without using CH (Xx X has not c*),-accessible diago-
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nal, the quotient of Xx X along A x has not ^-acces

sible diagonal). 

(2) Has /IN always a convergent net of type O K ? 

Equivalently: Is there always an ultrafilter on N that can 

be expressed as a union of strictly increasing family of 

co^ filters? (Our conjecture: it is consistent with ZPC 

that there is no such ultrafilter on N (perhaps under 

MA + -i CH ?)). 

At the end we want to remark that I. JuhasB has re

cently come to a similar problem: Is there a compact spa

ce X with ^ (X) > CK> and with no convergent nontrivial 

net of type a>, ? This question is related to the problem 

of omitting a>2 by compact spaces (seetJ^^* 
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