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COMMENTATIONBS MATHBMATICAE UNIVERSITATIS CAROLTNAB 

19,1 (1978) 

REMARKS ON SUBDIRECT REPRESENTATIONS III CATEGORIES 

Jifi VINXRBK, Praha 

Abstract: Possibilities of a generalization of the 
Birkhoff representation theorem for concrete categories 
are discussed. We present some generalizations of this 
theorem for a certain etas of categories (including e.g. 
relational systems, topological spaces, partially ordered 
sets etc.). Examples of concrete categories for which a 
generalization of the mentioned Birkhoff theorem is not 
possible are also discussed. 

Key words: Subdirect irreducibility, concrete cate
gory f subobject, semiregular category, subdirect represen
tation. 

AMS: Primary 18A20, Ref. Z.: 2.726.23 

Secondary 06A20f 08A05 

The concept of subdirect irreducibility was introduced 

for algebras by G. Birkhoff in [13. A variant of his defi

nition making difference between subobjeets and general mo-

nomorphisms (which is unnecessary with a lgebras ) can be ap

plied also for graphs (see C53) and for general concrete 

categories (see C43fC63). G. Birkhoff proved that every al

gebra of a finite type has a subdirect representation. A si

milar assertion holds also for finite objects of regular ca

tegories (see C43). We are going to present examples of ca

tegories where there are objects with no subdirect represen

tation. 
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1 m indebted to A. Pultr for valuable adTice. 

Definition* Let (H-U) be a concrete category, 

A c obj fa • Then A is said to have a representation in <& 

if there exist objects (A4) j € j f A 4 € Ji, t a product 

#W«- A4 with projections p4 and a subobject A*,: A —>7T A4 

$• e %J J o J 
such that U(pj^) ia onto for every j« J. 

Remark. In particular, we shall use this definition 

f OP peppeeentations in claaaea of anbdipectly and meet ip-

reducibles (aee 141)* 

First, we pecall some definitions: 

(a) Let (&,U) be a concrete category, X a set and &UX = 

• ( 4 A « obj % I UA * X § f-<) where -< ia defined by A-^B iff 

thepe exists m <f : A — * B with Uy * 1^^. fhen an object A 

is nest ippeducible if A «.-CsA4 (in ItUX) implies that 
& c %j 4 

thepe exists a je J such that A- -= A. 
«# 

(b) A subobject in a concrete category (#t,U) is a none-

mopphisii 4̂ ; A—-> B such that for every f: UC—*UA for 

which there is a if : C—> B with Uff« U ^ ^ f there exists 

a tf : C — • A with U«p * f • 

(c) A concrete category ( &,U) is said to be semiregular 

if it has the following properties: U ppesepves limits} 

fop every inveptible napping f: X—> UA there is an isoaop-

phism 9 with Ucp = f; if 00 is an isomorphism and Uoc « C-,. 

then oc » 1*} every ItUX is a set; for evepy y there is a 

subobject decomposition cp * {LG with ĉ a subobject and 

Uf. onto. 

(d) An object A of a concrete category is said to be sub-
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directly irreducible (cf. [13ft4]ft6]) if for every eubob-

jeet $*, % k —">**JT AJ such that all UCp^p) are onto at 

least one p * ^ is an isomorphism. 
<# 

Proposition 1. Let a semiregular productive C$ifU) 

satisfy the following conditions; 

(i) Every finite object has a representation with 

meet irreducibles. 

(ii) For every finite object k there exists Bf-A which 

is maximal in &U(UA). 

fhen every finite object of It has a representation 

with subdirectly irreducibles (i.e. a subdirect representa

tion). 

Proof. Suppose the contrary. Put n * min i card UA | UA 

is finite, A has no subdirect representation} . Obviously, 

n . > l . (If card UA.6 1, A is meet irreducible, then A is sub-

directly irreducible, too.) 

(a) Suppose there exists a maximal A, card UA * nf with 

no subdirect representation. Then there is a subobject 

/ub % A—^jTT. AI such that U(pi/tt) is onto for any je J 

and p . j r^ is isomorphic for no jeJ. By the maximality of 

A, card UA .< n for any j€ J. Every kz is supposed to have a 

subdirect representation, therefore, A has a subdirect re

presentation which contradicts the assumption. 

(b) Let A be an object with card UA * n which has no sub-

direct representation. According to (i) we can suppose with

out loss of generality that A is meet irreducible. By (a)f 

A is not maximal and by [6] (Theorem 3.6) there is a <gp ; 

: A—> B with card B«<n which can be extended to no k'h A. 
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We can suppose that Wf is onto. 

B has a eubdirect representation. % (ii), there ex

ists a maximal Cf*A. According to (a), 0 has a aubdirect 

represent ati on. 

Define (u,: A — > B M C such that pg<cc » <y , Pc(o.: k< C 

(Pg»Pc are projections). Then U ^ is one-to-one and there 

exists a eubobject decoapoaition (U * 4-4 n J—*» B>C C with 

^ # a subobject (see 14]). Sines 9 cannot be extended to at 

stronger structure, D » A and p * ̂  ii • subobject. A has 

a representation in 4B,C} which have aubdirect representa

tions. 

Therefore, A has a subdirect representation which is 

a contradiction. 

Remark. Differently from. £431 ws nasi not the finite-

nsss of &UX for any finite 1 here. 

Example 1. The condition (i) in Proposition 1 is ne

cessary: Let Sst|0 a-j be a category with the objects (Afv) 

where A is a set and 0* ?4l t and the morphiams (A,v) > 

—-> (B,w) mappings from A t o B i f v . 4 w and with no morphisms 

(A fv)—MB fw) if w>w. 

If t«-l then (Afv) » / V M (A.r). Hence, such a (Afv) 

is m% meet irrsducible and (bgr 143) it is not euMirectly 

irreducible* 

(A,l) is maximal and it is aubdirectly irreducible iff 

card A--;2. Every product of maximal objects in Set-^ «, is 

maximal and every aubobject of a maximal object in SetrQ «, 

is maximal as well. Hence, no object (A,v) with v<l has a 

subdirect representation although for every (Afv) there is 
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U yl) }»(*#•) maximal. 

Example 2* The condition (ii) in Proposition 1 is ne

cessary: Indeed, let Set, be a category with the objects 

(A,n) where A ia a aet and n is a positive integer, and 

(1, a>0) aa the terminal object, and the morphisms f:(A,n)-> 

—*(Bym) where f ia a mapping from A to B and n-tm. 

One can see that every (A,n) ia isomorphic with 

(Atn • l)*c (ltn) and therefore for a subdirectly irreducib

le (A,n) we have to have card A At. (On the other hand, any 

(A,n) with card A41 ia subdirectly irreducible*) Hence, 

no (A,n) with card A^2 has a subdirect representation al

though every (A,n) is meet irreducible (because &UA is 

isomorphic with coQ (resp. o o • 1) for card 14-1 (card A * 

• 1)). 

Proposition 2, Let a semiregular productive (^,U) 

with a two-point cogenerator satisfy the following condi

tions % 

(i) Every object of fc> has a representation with meet 

irredueibles. 

(ii) For every object A there exists an object Mr-A 

which is maximal* 

(iii) For every non-maximal meet irreducible B there 

exists a subdirectly irreducible D and a 9 s B—•* D which 

cannot be extended to an object I ̂  B. 

Then every object of & has a subdirect representa

tion* 

Proof* (a) If M is maximal, card UM^2, then one can 

easily see that M is subdirectly irreducible* 
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(b) If M ia maximal9 card UM>2, C is a cogenerator, 

then card UC = 2 and for ((U,.: If—-> C K the system of all 

the morphiams from M to C there exists a subobject ^% U-* 

— > Gr defined by Pz {*> m &* *• 4ccording to (a) II has a eub-

direct representation. 

(c) Let 4 be non-maximal meet irreducible. According 

to (iii) there exists a subdirectly irreducible 1 and a 9 : 

: B — • D which cannot be extended to an 1 £ A. Let II £-4 be 

maximalf define (& : 4 — ^ M x D by P%p< s 4*<M» PDr^ • 9* 

(PtgtPn are projections)• Then Uftc is one-to-one and (see 

C41) there is a subobject decomposition ^ « f^#e with /«.'& 

subobject and e: 4-4 4 #. By the assumption, A * A* and (0- * 

* <a' is a subobject. Consequently by (a) and (b) A has a 

subdirect representation. 

(d) According to (i),(a),(b) and (c) every object has 

a subdirect representation. 

Remark. By Proposition 2, every object has a subdi

rect representation e.g. in the following categories: rela

tional systems (in particular, directed graphs, symmetric 

graphs), hypergraphs, topological spaces, preordered sets, 

partially ordered sets etc. 

Example 3» ©*e condition (iii) in Proposition 2 is 

necessary. Indeed, define P: Set—•• Set as follows: 

P4 » i Xc 4 1 card X » <a,Q J u i 0A? , 

and if f: A — > B then define P(f): P A — ^ P B putting 

P(f)(0A) * 0fif P(f)(X) « f(X) if card f(X) * a>0, P(f)(X) = 

« 0fi otherwise. 
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Then the category S(f) (whose objects ara couples 

(A,r) with 4 a aat and re PA and whose norphisma (Afr)—* 

— > (B,a) art mappings satisfying P(f)(r)c a) has a two-

point cogenerator (2ff2)f aatiefiee (i) and (ii) and con

tains objects with no subdirect representation. 

Proof. Que earn prove (see £6lf 4.4) that 3(F) has 

the following subdirectly irreducibless (Xf0) with 

card X£lf (X,FX) with card XS2 and ( X f H \ C I } ) with 

H I X , card (IM)-tl. An object (X.fXx^C^l ) with an 

infinite I has no subdirect representation (see 161, 7.2). 

On the other hand, any object ia either maximal -i.e. 

(X,FX), or it has a representation with meet irreducibles 

CXfr) » >£s ( X f M \ 4 n D l 

(X,r)X (X,FX) for every X. Thus, the conditions (i) and (ii) 

hold (while (iii) doea not). 
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