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COMMЮГTATIOИS MATHIMATICAI ШГITIRSITATIS CAÄOLИAI 

19,1 (1978) 

ON CERTADł OONaRUïNCE LATTICБS OF FINГП UNARГ AШBBBAS 

P.ÍLҒÎ Páter Pál, Budapeat 

Aba tract: Thia note eontaina the proof of the follow
ing atatement : A finite unary algebra having not email con
gruence lattice of height two hae no proper aubalgebra. The 
methods need in the proof are entirely elementary* 

Key words; Congruence lattice, unary algebra. 

AUS: 06A20, 08A05 Ref. 5.: 2.724.6 

There ia a famoua pi-oblem in Birkhoff'a book [1, Prob

lem 50, p. 110] about the repreaentability of complete lat-

tieea aa congruence latticee of algebraa. Thia problem wae 

solved by G. Grfitzer and E.T. Schmidt [4], namely any alge

braic lattice ia ieomorphic to a congruence lattice. However 

both the original proof and the new one (Pudl£k and Turns 

t5]) yield an infinite algebra with the given congruence 

lattice, even for finite latticee* So it ia natural to aalc, 

which finite latticee are ieomorphic to congruence latticee 

of finite aigebrae (eee C3, Problem 13, p. 1161). The lar

gest class of finite latticee for which this problem is sol

ved poeitively is the class of finitely fermentable latti

ces t53. 

Using two-dimensional vector spaces over finite fielde 

we can represent the latticee M^ of height (length) two 
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with a atoma, wheaever n - 1 ii i prima power. % a re

sult of R.W. Quackenbueh £6] for other a#e 1^ cannot be 

represented aa Coa (A ) of a finite algebra A generating 

a congruence permutable variety. P. Qoral£ik£23 pointed 

out that HU - the amalleat among such latticea - might 

prove crucial to the problem. 

Investigating congruence latticea we may reatrict 

ourselves to unary algebras. IB the present paper we deal 

with finite unary algebraa with congruence latticea iso

morphic to m^. 

Fropoaitioa. Let A be a finite unary algebra, aad 

suppose that the height of Con (A) ia 2. Then either the 

number of nontrivial congruences ia less than 4, or .A haa 

ao proper subalgebra. 

froof. SiBce A ia uaaryf the joia aad meet of eubal-

gebraa are the set-theoretic oaea. So Sab (A) is dietribu-

tive. 

If ft c A aad 6 a COB ($}>), thea defiae S* ia the 

followiag way; xm yC0*l iff cither %fy « ft aad xm y(0 ) t 

or x * y. Now 0* ia a eoagrueaee oa A f because A ia una-

ry. If A 3 A j D ... D An ia a ehaia of subalgebrae, thea 

%0 > A > • • • > A ia a chaia of eoagrueaees oa A • 

So from the coaditioa oa the height of Coa (A) we obtaia 

that aay chaia ia Sub (A) has the form A a f s> <f 3 0 

(aone members may be missing), where If ia a simple, (X ia 

a one-element subalgebra. 

From the previous two remarks it follows that Sub LA) 

is one of the liated below latticea. 
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A 
simple 
subalg. 
one-el. 
subalg. 

0 

10 11 

We must ehow that in casee (2) - (11) either the number 

of nontrivial congruences on A ie leee than 4, or the height 

of Con (A) cannot be 2. Let M denote the monoid of all po

ly nomiale of A . 

Caee (2). Jf ie the only proper embalgebra of A f *$ 

ie eimple. Let T « A \ f and for x c A let H(-t) « 

• i ft M | f (x) « If f f and define the equivalence v ae fol

low: isy(^) iff H(x) • N(y). It ie eaey to »et that v € 

€ Con (A), S i > 1 ) ̂  WJ • *Bam * m h% 9 that is t&3t 

any pair of elements u,v e JP , there exists an f e M such 

that either f (n) € JT and f (•) € T or reversely* Ohooee 

an g c M in euch a way that \ Im g n T \ be the emalleet poe-

eible positive number. ( A ie finitel) If |Iig o f |>1, 

then we should apply the previoue obeervation for two ele

ments of Im g n T to obtain an fcM eatiefying 1£ J Im fgn 

A T | < \ im g n tT| . Time the only poseibility ie that 
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I IM g n f\ » 1. Let x be such an element for which g(x) a 

4 T . Since g(x) generates A , there ie an he M such 

that hgCx) » x. Denote hg by m. We know that mCA ) £ Sf v 

u ( i | and mCx) » x. 

Let 0 be an arbitrary nontriyial congruence on A 

differing from L% • Since 9 A t^ « fit* , each class of 

0 contains at most one element of if • On the other hand 

am G v L , . = c , each elaes of d must contain an ele

ment of ff . Therefore such a congruence can be described 

by a function say n A —** *£ which maps an element of 

A to the uniquely determined element of Jf belonging to 

the same congruence class of § • 

Let Pj Cliijsik) be the functione corresponding to the 

congruences ©.. Suppose that k&3* Since ^ i v ̂ 2 * ** * 

for any two elements yfa e if there exist elements e Q » yf 

a-^i•••f8D » % and t1#***f% such that s^ e ff Co*?isfp)9 

tte r Cl.4i.6p) and Ci i 4 ls.J « <r1Cti)lr2Cti) } fop all 

l&imp. Applying m we get that eithep { mCs^ , )fmCs£)} « 

* 4mCt . | )} Cin the case when aCt^) « tf ) ©pf mCej^j) »B^fli^ J * 

» |P 1CX),P 2CX) { Cwhen aCt^) * x). Take y » p^Cx) and z » 

» pjCx). Then from this cons id epat ions it follows that mC*)e 

e ip-^Cx^PgCx) } f which contpadicts to the conditions #-* A 

A ® l " ® 2 A ^2 a °* * Ihere3fort in tlie ca8t (2) ***• numbep 

of nontpivial congpuences does not exceed 3. 

Case C3). 4 tr f is the only ppopep eubalgebpa of A • 

Let fop x e A f NCx) «-Cfe ll| fCx) » <r I f and define *> 

by xm y(» ) iff i(x) * NCy). Obviously *» * Con C A ) f 

C 0*1 ii .-t^f f and if fop a 0 * Com CA) t<rl 0 » i#i f 
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than # i » • On tht other hand If £<rl § f -Crf , than 

# « u . So » ia the unique nontriTial congruence on A * 

Caat (4)* The proper subalgebras of A art tf and 

•Cr I f If ia simple, cr * # . Snppoaa that § l f # 2 § i £ 

art difftrtnt nontrivial congruencee. If l i i r t S ^ , then 

[ o r 3 # i 2 [ x . l , a o , since 8 ^ 1 ^ » « , i « r . Thia 

iaplita O J ( # 1 v ©2) » - f r | ecmtradieting to S;|V#2-» 

» t • Thus in cast (4) the number of nontririal congruencta 

ia at noat 2. 

Caat (5), ^ x and *^2 are the only proper aubalgab-

raa of A 9 thty art simple and tf^A ^ 2 * 0. In thia ca

at c*> «< **§ < t& v t^ -< c so the height of Con (A) ia 

at ltaat 3 f contrary to our hypotheaia. 

Caat (6) . In thia cast A * < o^, <r2 ? 10 «A ia ainp-

l t , which ia not the caae. 

Caat (7) . A * *4 v ia} 9 If ia simple and has no pro

per aubalgebra. It ia easy to see that Con (A) consist a 

of v. , t £ , o> . 

Caat (8). The only proper subalgebras of A art i ar^l f 

4cr 2 { and i&\9 ir 2 l • if . Suppose that # c Con iA) is 

different froa 1, , c£ , <y . Since # v cJL • L f one of 

tht *$*• ia congruent to an element of A \ 1f by # f 

and therefore 8 * t , because elements outside of if g,mjm«* 

rata A , and tht cf^a art fixed points. So in the cast 

(8) the only nontrivial congruence ia y^ • 

Case (9). ¥x and ff2 art aiaple subalgebras of A % 

4<f| « tfjA^t A * ^ i u ^2» • f l i ****** *• »© other subal-
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gebra of A . Let 0 % Con C«&) lie different from u , 

A • *«% • *> * then from the relatione 0 A t#«#. « ««> 

8 v A , * L (j » lf 2) it followe that 0 ia a matching 

between tf-^ and tf 2« Since 0 ia a congruence it yield© 

am, isomorphism between %f-̂  and if#»* I f they a r e n o t ifl0~ 

morphic, then such 0 cannot exist, 00 then the number of 

nontrivial congruences is 2. So suppose that £f-̂  and ^f 2 

are isomorphic. The number of isomorphisms between tf^ and 

If 2 i« the 00110 00 the number of automorphisms of *f^ 

For unary algebras the orbits of the automorphism group 

form a congruence. Now in our caae c ie the only fixed 

point in tflt 0o{c? iaan orbit of Aut ( tf^)t therefore 

- by the eimplieity of *f1§ Aut (tf-̂ ) * { % I • So the 

number of nontrivial congruence© is at most 3 in the case 

(9). 

Caee (10). The proper ©ubalgebrae of A are tf f "tô jii 

i <r2l* < 0 V ^2^ » ^ c tf f <r2 # Jf , tf is eimple 

Jl« !fu< ô gl • One can eaoily check that in thie caee 

the only poseible congruence© are i#f t r̂ p tJ , a> # 

Caae (11). In this case A is a three element eet with 

identical operation, 00 Con (A) coincide© with the parti

tion lattice of a three element set which containa 3 non-

trivial partition©• 

Thuo the proof ia complete. 
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