
Commentationes Mathematicae Universitatis Carolinae

Reinhard Nehse
The Hahn-Banach property and equivalent conditions

Commentationes Mathematicae Universitatis Carolinae, Vol. 19 (1978), No. 1, 165--177

Persistent URL: http://dml.cz/dmlcz/105843

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1978

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/105843
http://project.dml.cz
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THE HAHN-BANACH PROPERTY AND EQUIVALENT CONDITIONS 

Reinhard NEHSE, Halle/Saale 

Abstract: Several general properties are proved to 
be equivalent to Hahn-Banach extension property in a par
tial ly ordered vector space• The properties include the 
least upper bound property, the separation property and mo
dified Farkas-Minkowski or Kuhn-Tucker or Krein properties. 
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§ 1. Introduction* The Hahn-Banach theorem is known 

to have fundamental importance for several fields in mathe

matics, for instance in functional analysis, convex analysis 

and mathematical optimization. Further, it is a well-known 

fact (see To [91) that the least upper bound property (lub) 

of a real partially ordered vector space F (this means that 

every nonempty subset of F which has in P an upper bound, has 

also in F a least upper bound) is equivalent to the Hahn-Ba

nach extension property (HB): for a sublinear mapping T:E—* 

— t F and a linear mapping L :A—*F with L (x)4T(x) for 

all x€ A, where A is a subspace of the real vector space Ef 

there exists a linear mapping L:E—* F such that L (x) = 

= L(x) for all xe A and L(x)&T(x) for all x*-E. 

Previously Day C 21 and Blster/Nehse C31,t4l have dis-
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cussed some conditions which are equivalent to (lub). 

The purpose of this paper is to prove more generll equi

valent conditions. By this we are able to give applications 

to nonconvex analysis. Our general separation theorem for 

sets in a product space leads to generalizations of several 

well-known theorems. 

§ 2. Notations and terminology. Throughout this paper 

R denotes the field of real numbers ordered in the usual sen

se f M denotes a real vector space and F denotes a real par

tially ordered vector space, that is a vector space, where m 

binary reflexive, transitive and antisymmetrical relation 
w 4 w is defined which is compatible with the vector structu

re of F. E(K) denotes a real vector space quasiordered by the 

convex cone K with OeK as a vertex. 

Further, we apply some abbreviations: P+:= 4 y € F/O-fey f j 

X (1,F) denotes the real vector space of all linear opera

tors L:E—* P; 

St+(B(K)fP):« 4L6^(I(K),F)/06L(y) V ye K} . 

Now let C be a nonempty subset of a real vector space. 

Then C denotes the affine manifold spanned by C| C denotes 

the algebraical relative interior of Cf that is 

^ j - i u i C / V T ^ C a teR + i t + 0 : u + r(v - u) e C Vre(-t,t)j, 

C is said to be expansive if for at least one uQe
 XC and eve

ry u € C holds u Q + t(u - % ) • c for a11 t € COfD« For a map

ping T:C—P F we define 

epi T:« 4(u»z)e C*F/T(u)6z} f 

hypo T:« 4(u,z)e C*F/z.iT(u)} . 
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Moreover, we use t he fo l lowing no t a t i ons f o r a non

empty subse t C of I « P J 

CCC);s 4 z t BHW/Z « t u f t # K+f u i C } 

as the cone spanned by C| 

P E C C ) ; - M x e ! / 3 y # F ; C x f y ) c C | 

as the ̂ -projection of Cf where Pg is a mapping defined by 

PECxfy) « x for all Cxfy)clxF. 

§ 3. A separation theorem. We will say that F has the 

separation property CS)f if in F holds trues 

Let A and B be subsets of IxF such that CCA - B) is 

convex, PgCA - B) is expansive ' and 

CI) Ot^-gCA - B). 

Then there exist an Lcl6CBfF) and a y § F such that 

C2) LCx^-y^ TQ& LCx2)-y2 V Cx-̂ y-,) € Af 

VCx2,y2)€ B 

if and only if 

Cx.y-^f A 1 

Cxfy~)c B ) c x 
t^2} 

Theorem 1. If F has the least upper bound property, 

then F has the separation property. 

Proof. Using a result by ?angeldlre Csee til, 1.5.1) 

we have 

M ^ j U - B)] » ̂ CA - B). 

Therefore f 

1) A convex set is expansive, if 1C#0. 
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E l : s liPE(A - B) « h^U - B) « ̂ Pg (A - B) « ̂ g (A - B) 

is a subspace of B and 

(4) 0«iPB(A - B) « h^ (k - B) 

is satisfied. Then Af B and C(A - B) are subsets of E,x F. 

Now we can restrict our consideration to the space l,x P. 

From (4) it follows that for eirery xcE^ there exists t, e 

C 1+ f t,4i 0, such that for any t c C 0,t^)there are y,:« 

:- y1(t)£ F and yg:= J2(t)c P with (txfy1 - J2)€ A - B. Then 

we can find such x, and x2 in 1, for which 

(5) (tx,yx - y2) = (x1 - x2,y1 - 72
) ' Cxliyl) " 

- ( x 2 , y 2 ) € A ~ B l 

now we def ine 

(6) F x : = 4 y e F / ( x f y ) e C U - B)f , x c E r 

Proa (5) we ge t t " 1 ( y 1 - y 2 ) c P x fo r t e ( 0 , ^ ) . This shows 

(7) \ + $ f°T a l l x c l 1 # 

Moreover, one has 

(8) PQS P+ . 

Let ye fQ\ i Oi be fixed. Then, using (6) and the defini

tion of C(A - B), there exist tiR^ , t40 f and points 

(iclfy1)€ A and (
x2»y2^€ B s u c h t h a t 

(0,y) - t t (xi»yi) " (x2»y2)3 » w h e r e xi = x2 • 

% (3) one has y2iff Jxi t h a t mi?ans y = t ( y 1 - y 2 ) c P+ . For 

f ixed x , x ' c % *® have 
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Fx + Fx, «4y/(x,y)eC(A - B){ + -fy V(x'fy ') f C(A - B)} f 

then for fixed ye Fx and y
#e F , it holds 

(x,y) + (x',y#)€C(A - B) + C(A - B) = C(A - B) 

since C(A - B) is a convex cone* Therefore 

(x + x',y + y')eC(A - B) ; 

that means y + y'e F + , . Thus 

(9) Fx + FX,S Fx+X. . 

Now we are able to show t h a t F has a lower bound in F f o r 

every x e l - . . Let *&E, be f i x e d . Then, by ( 7 ) , t h e r e e x i s t s 

y # with - y ' e F . From (9) and (8) i t fol lows y - y # e F x + 

+ F-Xfi FQ£ F+ f o r a l l y c F x . Hence y#fe y f o r a l l y e F% . 

Since F has the l e a s t upper bound p rope r ty , the ope

r a t o r T given by 

(10) T(x);= inf { y / y « F x § 

i s wel l -def ined for a l l x< E^ ; and one has T:E^—** F. For 

t h i s mapping we get 

T(x + x # ) = i n f i y / y e F x + x / f 

= inf {y + y V y + y ' e F $ 
y , y x x 

£ inf | y + y V y e F , y ' e F J 
y . y 

= inf 4 y / y e F x f + i n f J y V y ' e T%,f 

= T(x) + T(x ' ) 

for all x, x'e B-̂ . Now let t £ R+ f t^O, and x e E.̂  be fix

ed. Then 
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T(tx) « inf { y / y c F t x } « inf € y/y t tF x i 

= inf i t y V y ' * F% | « t inf l y ' / y ' c Fxf 

= tT(x) . 

This relation is true also for t = 0. Therefore, the ope

rator T defined by (10) is sublinear. 

Thus, using (HB)f there exists an LcStCSifF) such 

that L(x)iTCx) for all x i E ^ Combining this with ClO),C6) 

and the definition of the cone CCA - B) we get for x = ac, -

- *2 

LCx-j, - x2)i4TCx1 - x 2 ) i i y 1 - y2 VCx^y^ftA, 

VCx2,y2)6 B. 

Since F has the least upper bound property, this implies 

Cll) LCx-̂ ) - y.j£ y0 .4 LCx2) - y2 VCx-py-^CA, 

V C x 2 f y 2 ) € B f 

where y A i F i s an element for which 
" o 

sup 4LCx.|J - y^/i^tW^) * A$ * y0-# inf 4 LCx2) - ̂ 2/^x2,y2^c B^ 

is satisfied. Let E 2 be an algebraical complementary space 

of E, . Then an arbitrary zs£ has a unique representation 

in the following way: z = x + uf x e E ^ u€l 2 Csee C 73, p# 

54). By Cll) we can see that L# defined by L#Cz) » L#(x + u)« 

s LCx) for all zc E is convenient. 

Conversely, it is clear that (2) implies C3)» 

§ 4* Equiyalent conditione. In this section we consi

der the following properties of F using the assumption (A): 

Let F(U) and DC?) be subsets of E such that 
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P0:« D(U)AD(¥) is nonempty, let U:D«J)~+ I(K), ?:D(?) —-»> 

— * P and let C(A) be convex ' tor 

(12) A:« 4(U(x)+kf ?(x) + f - u)/x€P0, kcK, fe F^J 

with 

(13) u:« inf 4?(x)/xfcP0, -U(x)*K}. 

Let U(P ) 4* K be an expansive set such that 

(14) 0€1tU(PQ) + K3 • 

Modified Hahn-Banach extension property (MHB): Let 

D(L ) be a symmetric subset of lf let D(T) be a subset of B 

such that D(T)2D(L ) f D(T) - D(L ) is expansive and 

04 iCD(T) - D(LQ)1 . If T:D(T)—> P and L0;D(L0)—*F are 

mappings for which C(epi T - hypo L ) is a convex set and 

(15) T(0) = 0, 

(16) L0(x)6T(x) Vx4D(LQ)f 

(17) -L0(x) = L0(-x) Vx€D(LQ) 

are satisfied, then there exists an Lcftt(lfF) such that 

(18) L0(x) = L(x) VxtD(L Q), 

(19) L(x)4T(x) V xcD(T). 

Modified Parkas-Minkowski property (MM): Under assum

p t ion (A) we have 

O c K l 

чP0J 

- u ( x ) c к ; 
(20) V —^OŚV(x) 

X | 

2) In C8l we have given some sufficient conditions for this 
property. 
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i f and only i f t he r e e x i s t s an L « SC+C§CK)fF) such t h a t 

(21) OáVCx) + LCUCx)) V x « P 0 . 

Modified Kuhn-Tucker proper ty CMKT); Ca) Let assump

t i o n CA) be s a t i s f i e d . I f x i s a s o l u t i o n of problem 

CP) f ind x0eG with G:« «[x€ P0 /-UCx)e Kj such t h a t 

?Cx 0 ) iVCx) for a l l x € 0, 

then t he re e x i s t s an LQ a £+ClCK) fF) such t h a t CxQfL0) i s a 

s o l u t i o n of problem 

CaP) find C X 0 , L 0 ) € P 0 M ^C1CK) ,F ) such t h a t 

§ C x 0 , L ) i | C x 0 > L 0 ) £ | C x , L 0 ) fo r a l l x € P Q and a l l 

L e 2t+ClCK) fF) f where § i s the Lagrange-mapping d e 

f ined by 

fCx f L) :=?Cx) + LCUCx)), X€P Q f L 6 £ + ( B ( K ) f F ) . 

Cb) I f the order-cone K has the p r o p e r t i e s xTL+jb and 

K a bK 3 ' and i f CxofLQ) i s a s o l u t i o n of CSP), then xQ i s 

a s o l u t i o n of CP). 

Modified Krein proper ty CMK): Let D be a nonempty sym

metr ic convex subset of ECK), and l e t L-,sD—^F be a convex 

mapping such t h a t 

O i L ^ x ) V x e D n K , 

Lj,(-x) = - L ^ x ) V x i D . 

3) For a subset K&I(K) we denote the algebraical hull by 

K that means Ks= KU*Kf where
 aK contains all points 

of 1(K) which are linear atteinable of K. 
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I f O s 1 ( D + K)f then the re e x i s t s an L e JC^CKK) fF) such 

t h a t 

\{x) = LCx) V x c D . 

Krein property (K); Let A be a subspace of ECK) such 

that A - K is also a subspace. If LQe ^(ACAft K) fF) f then 

there exists an Le^+ClCK)fF) such that 

LQCx) = LCx) VxeA. 

Theorem 2. The properties Club), CHB)f CS)f CMHB), 

CMFM)f CMKT), CMK) and CK) are equivalent for a partially 

ordered vector space F. 

Proof. In order to show these equivalences we prove 

the following implications 

(S) *-* CMHB) «#* CHB), 

Club) -—-MMFM) ==MMKT) —» CMK) —*CK). 

It is referred to £23, p. 136, for a proof of CK) «-*> CHB). 

1. CS)*--> CMHB),* We put A:-* epi T and B:« hypo LQ. Then 

C16) implies C3). % (S) there exist L6*£CE,F) and y QcF 

with 

L(x) -y1t6y0iL(y) - y2 V(x,y1)eepi T, V Cyfy2)e hypo LQ. 

For y^ = T(x) and y2 = LQ(y) we get 

(22) L(x) - T(x)6y0 VxeJKT), 

(23) L(y) - L0(y)^yQ Vy€D(L Q). 

% means of (17) and (23) one has 0£yQ and, therefore, (22) 

implies (19). Combining (15) and (22) we obtain yQ -= 0. In 

view of (23) and (17) it follows (18). 
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2., (lTO)*s^(HB): We apply (MHB) to U(T) » lf D(L0) • 4, 

where the mappings T:B—*Pf L :4—*P are sublinear and li

near y respectively. 

Therefore, in connection with Theorem 1 and To#s result 

we have the following equivalences: 

(lub)«—> (HB)«—» (SX—+ (MHB). 

3. (lub) —» (MPM): Let (20) be satisfied. By (lub) and (20) 

u defined by (13) is contained in P+ . Moreover, U(x) + 3c « 0 

with kiK implies u6?(x) and, therefore, one has Oi?(x) • 

+ f - u for all f& P+ . Since (lub) is equivalent to (S)f we 

are able to apply (S) to the sets B:« 1(0,0)} & B(K)x P and 

A defined by (12). In that way there exists -L < £C(B(K)fF) 

such that 

-L(U(x) + k) - ? (x ) - f • u-tO Vx€ P 0 > V k e Kf V f f i F + . 

Since u ft F^ f we ge t fo r f = 0 

(24) L(U(x) + k) + ¥ ( x ) £ u 2 0 ¥ x # P 0 , V k e K . 

In order to prove L eS£+(E(K) fF) l e t x € P Q and ke K be f i x 

ed elements . Then fo r each t e H + l t#»0 f we have 

L(U(x) + t k ) + V(x) » L(U(x)) • V(x) • t L ( k ) £ 0 . 

Therefore (see [63, Lemma A) f it follows 

inf <L(k) + t"1 CL(U(x)) • ?(x)l /t>0| » L(k)2 0 

because we get from (24) for k = 0 (21). Hence 

L c£+(E(K)fF). 

Conversely, it is clear that (20) is a consequence of 

(21). 
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4. (MBI)-—> (MKT): Applying (MIM) to the napping* U and V* 

defined by 

V'(x):« V(x) - V(x0), xeD(V), 

we get from (21) 

(25) L0(U(x)) *?(x)^?(x0) V x c P 0 

for at least one LQ e ̂ +(E(K)fF). Hence L0(U(xQ))tS 0. 

On the other hand we have LJU(xQ))iO because of 

U(xo)^»0. Therefore, it is L0(U(x0)) * 0. Then (25) leads to 

(26) L0(U(x0)) 4- ?(x0)#LQ(U(x)) + V(x) V xe¥Q . 

Since U(x ) $ 0f one has L(U(xo))#0 for all L * tf+(B(K)fF) 

and we get 

L(U(x0)) + ?(x0),wL0(U(x0)) * ?Cx0) Vl«rf+(B(K),P). 

In connection with (26) (MKT), part (a), ia proved. Part (b) 

is shown in [52* 

5. (MKT) *—-!> (MK); It is easy to see that D + £ is convex 

and, therefore, this set is expansive, too. If we put 

1 • B(K) + D(U), D = IK?), ? = L..̂  and U * -I, where I(x) « x 

for all xel(K), then all assumptions of (MKT) are satisfied 

and we have P^ = D, o * 
G = | x c P o / x e K f = DnK. 

Moreover, x = 0 is a solution of problem (P). By (MKT) then 

there exists L etf+(E(K),P) such that 

LL(x0) + L0(-x0)^LL(x) + L0(-x) VxftD, 

From this we get L (x) .6 I* (x) for all xeD. That means 

L0(x) * L-,(x> VxeD, 
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since D = -D and -%Cx) » %C-x). Therefore, L = LQ is con

venient. 

6. (IfK)-a-* (K): We choose in (MK) D = A, l^ =- LQ . 
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