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ON THE PERRON-FROBENIUS THEORY FOR SETS OF POSITIVE
OPERATORS

Karel HORKK, Praha

Abstract: In this note the Perron-Frobenius theory
for certain sets of positive integral operators is develo-
ped. The asymptotic behaviour of iterated operators

M? is studied, and the existence of a global subinvariant
function for the corresponding maximal Perron eigenvalue
is established. Some consequences of this results are pre-
sented,

Key words: Positive integral operator, Perron-Frobe-
nius eigenvalue, subinvariant function, compact sets of
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1. In paper [3], in connection with a dynamic pro-
gramming problem, Perron-Frobenius theory for sets of non-
negative operators given by finite or countably infinite
matrices is developed. In this paper we generalize some re-
sults on sets of integral operators. We are concerned main-
ly with the existence of a global Perron eigenvalue and a
corresponding subinvariant function. In a wide class of
controlled Markov processes of the diffusion type to each
stationary control strategy there corresponds a non-nega-

tive operator (potential). The assumptions of our theorems
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are fulfilled for sets of potentials for a subclass of such
processes. Thus, this note may be useful for the study of
the properties of controlled Markov processes.

Let us give a simple example: Diffusion on [ 0,1) with
generating differential operator o:’l":"/dx2 + u(x) d4/dx, with

reflection in O and absorption in 1, has the potential

] 1
we)(x) = f Q) [ a(e)Tas £Gay,
vy

where Q(y) = exp(j:*u(a)da), xvy = max(x,y).

If we interpret here u(x) as a stationary control strategy
from the class of all Borel measurable functions on [0,1)
bounded by a given constant, we obtain a set of potentials

fulfilling our assumptions.

2. Let X be a Borel set in ) and let V be a non-ne-
gative 6 -finite measure on its Borel subsets. Let m(x,y)

be a measurable non-negative function on X< X. We define
operator M by

(1) (M) (x) = fi m(x,y)f AV ().

We shall say that operator M in (1) has a density m, if
Iml = sup fxm(x,y)dv(y) < 0.

If we introduce the multiplication of densities by

(2) m o m, (x,y) = fml(x,z)mz(z,y)dV(z),

then the iterated operator M" has a density m,=

S MoM©o ,.0 M,
et
n

- 266 -



Definition 1. A function w not identically zero is
called right eigenfunction of M corresponding to eigenvalue
[ if

(3)  @u(x = [m(x,y) @ (y)av(y) for all xeX.

Similarly we define the left eigenfunction » not equal
zero a.e,, namely by the relation
(4) @ »(y) = f » (x)m(x,y)av(x) for V-almost all ye X.
We recall that function £ is said uniformly positive

if there exists a constant c> O with £2 ¢ everywhere.

For our purposes we need the following

Theorem 1. Suppose O<V(X)< oo , and let there exist

a natural number n such that m, is a uniformly positive boun-
ded function. Then operator M with density m has a positive
eigenvalue @ > 0 in absolute value greater than any other.
The corresponding eigenfunction w is bounded and uniformly
positive and the same holds about » a.e. Moreover w and »
are unique up to a multiplicative constant. Let [ w» dV =
1, then

(5) m(x,y) = @Pw(x)» (y)(1 + 0(A™), n—> 0, 0= A<l,

where A is independent of x, y.
The proof with a slight modification can be found in
[2],

Definition 2, For functions f, g on X we write £& g
if £> g and £>g on a set of positive measure.

Like in [2] it can be also proved that for the maxi-
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mal eigenvalue @ holds

(6) ¢ = sup 46 > 0: 3 £&0 bounded: MFf > 63 .

Lemma 1. If the conditions of Theorem 1 are satis-

fied then
(7 ¢ = sup inf [ nx,y)f(y)av(y)/e(x),

where Mf(x)/f(x) = 00 for £(x) = 0.
Proof, We denote for arbitrary bounded function £&0

[}
[}

ry(£) = inf Mf(x)/f(x),
x

Ty

(8) r, = ry(f) = sup {6>0: M =2 6L£% .«

Obviously, @ = sup rz(f). Now it is rlz T If it were
r,<r,, then by (8) it would exist a 6 > r, such that
Mf 2 §f. But for € > r, there exists xeX such that
Mf(x)/f(x)< 6 , This is a contradiction. On the other
hand, by (8) is r,(f)f<Mf, sowe have r,(f)& ry(f) for

every £ &0. This all gives our assertion.

3. Let operator M have density m. The following lem-
ma gives us an information about the asymptotic growth of
densities m as n-—> o .

Lemma 2, If the conditions of Theorem 1 are satis-
)

fied then the infinite series = mn(x,y)zn have the same
m'=1

radius of convergence R = 1/50 for every xe X for almost

all ye X.

Proof. For the radius of convergence R of the series
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= mn(x,y)z;n we have from (5) for every x for almost all
= v V@) » ()
y 1/R= }.’,“.'.‘,“,,‘J’ m, (x,y) = }wim_:gg ® «(x)»(y)
m
Vv1+ O(A") =0 .
The following notion plays an important role in the
sequel.
Definition 3. Let function f be positive and finite
on a set of positive measure V. We call £ (3 -subinvari-

ant for operator M with density m if

(9 BMLLL, 04 (A< 0O .

Iterating this relation we get for (3-subinvariant
function f {snllnféf. If M is an operator with density m
and for some natural n is O< aé%éb < o0 then we have
for B>0 0«<p” [ £(3)aV(y) &« U4 £, hence £ is
uniformly positive. On the other hand for x such that f£(x)<
< 00 we have ﬁnj‘mn(x,y)f(y)dv(y)éf(x). Hence, f is fi-
nite a.e.

Lemma 3. If R(x,y) is the radius of convergence of
the series §4 mn(x,y)zn, then for B >;g& R(x,y) there

m=
exists no (3 -subinvariant function.

Proof. Suppose that there exists such a function

then we have for 3 > {3 > sup R(x,y):

) @
-— - n
& m§4 mn(x,y){snf(y)d\f(y) "nu%d F’ &%(x,y)f(y)dV(y)e
& % f(x)(ﬁ/(} Ve ao . This contradicts the inequali-
m=1

ty § > sup R(x,y).
In the previous lemma we can take only (3 >*sg& R(x,y)
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where V(A) >0, and the proof proceeds in the same manner.

Thus, we have

lemm. 4. If R(x,y) is themdius of convergence of the
[
n
series =, m (x,y)z", AcX, V(A)>0, then for f3 >,25, R(x,y)

there exists no p-nubinvariant function.

Corollary 1. If the conditions of Theorem 1 are sa-
tisfied and R is the common convergence radius of series
= mn(x,y)zn, then for (3> Rno (-subinvariant function

can exist.

4. Up to now we have studied operators with densiti-
es in the case of finite measure V on X, Suppose for more
general case that Xc Rd is 6 -compact armd V non-negative
measure finite on compacts. Then there exist X, compact such
that X = ht’:i X, V(X )< . We can choose X, so that X c
c xk+1' V is a 8 ~-finite measure on X. If we are giv.ron an
operator M with density m, we can for any natural k define

(x)

operator llk with density m where

(10) m(k)(x,y) = m(x,y), (x,y)s!kx X, = 0 otherwise.

In this case we shall additionally suppose that the follow-
ing conditions are satisfied:
(i) m is lower semicontinuous on XxX,

(ii) Ve >03kxeN : [ mnix,y)aviy)<e , xeX,
w4 Xg

(iii) O<m(x,y)&« C < c© for every x a.e. on X, .

Theorem 2., Let Xc R be & -compact and V non-negati-

ve measure finite on compacts, let M be an operator with
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density m which satisfies (i) - (iii)., Let K_denote the
o0
common radius of convergence of series m§4 n!(lk)(x,y)zn

where we define
2’ (x,y) = fx“m"‘)(x,z)nug‘_‘}(z,y)dV(z).

Then for the radii of convergence R(x,y) of the infinite
series = m (x,y)z” holds for each x R(x,y) = R for al-
most all y, R = h]-'}g‘o Rk'

(k) satisfies

Proof. The operator M, with density m
conditions of Theorem 1 because of compactness of xk and
because of lower semicontinuity of m>O. The series

=, nlgk)(x,y)zn has the convergence radius R = 1/p ,, whe-
re Q> 0 is the corresponding eigenvalue., We have for
any (x,y)e X»X

llék) (x,y)é mlﬁk"'l) (x

W)em (x,y),
so that for the convergence radius R(x,y) holds
R Z R ., ZR(x,y)Z 0 and hence R ¢ RZR(x,y).
Let @, be the right eigenfunction corresponding to the
eigenvalue @, by Theorem 1 such that >‘eksz“ (uk(x) =1,

We set (w, = 0 on the complement of X in X, Then from the

relation

() (

@i (x) = R kam W) @y (y)aviy)

we get by Fatou’s lemma

12 w(x) = }:&1{‘13 @ (x)2 R&m(x,y) @ (Paviy),
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i.e. w 2RM@w . Now we show that w is positive on a set
of positive measure. Let X, be such that V(X.)> O, and

1
[ m(x,y)dav(y)e — , x€e X,
X 4R

We can take x,, k € N , such that

% € wylx) = ka n(x,,y) ©,(y)dv(y) <
R, fxmm(xk,y) @ (¥)av(y) + § R/R £RC, .&n&k(y)d\r(y)-!-
+ 3,
7
1
Hence, R J‘x» w(y)av(y)z 2'5; s and we have for xe¢ X,

n(x,y) 2 a,>0 on X x X., an inequality
@@ TR fy nx,y) @ @A)z gE >0, kzr.
r

We have shown that w is an R-subinvariant function. R(x,y)
is obviously a measurable function on Xx X. Teking € > O
arbitrary and applying Lemma 4 we get R(x,y)2R - € for
almost all ye€ X. This gives R(x,y) = R for each x for al-
most all y.

As an easy consequence of Lemma 4 we obtain

Corollary 2. If the conditions of Theorem 2 are sa-
tisfied then for (3 > R there exists no (3-subinvariant

function,

Corollary 3. For operator M satisfying the conditi-

ong of Theorem 2 does exist an R-subinvariant function.
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5. In this section we shall deal with the sets S of
operators M with densities satisfying conditions of Theo-
rem 1. The radius of convergence R corresponding to opera-
tor M€ S by Lemma 2 will be denoted by R(M). Analogously we
shall write @ (M), (M), 2 (M).

We define a distance in the set of densities by the
relation

lm=-n’ll= sup fx |m(x,y) - n’(x,y) ] av(y),

and denote by JR (X) the metric space thus obtained. The
set of operators will be identified with the set of densi-
ties Sc M (X) which will be assumed to fulfil the follow-
ing conditiors :

(i) S is compact in R (X),

(ii) for any measurable function £&O (finite a.e.),
and any M,Ne S there exists P€ S such that Pf2 Mf, Pf2 Nf,

In combination with conditiom (i) we shall use the
following theorem about the continuity of the eigenvalue

on S.

Theorem 3. Let there exist a natural n and positive
numbers a, b such that for all Me S holds 0< a4m (x,y) £
£b < 00, Then ® is a continuous function of m.

Proof. First assume n = 1., Take M'e¢ S and denote as
in (8) ry(f) = sup{6 > O:Mf 2 £3 . Let M be such that
lm - m’ll< d, Then for gé O bounded

Mg(x) = M'g(x) + [ (m(x,y) - n'(x,y))g(y)dvV(v) z

z M'g(x) - J sup g(x).
X
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Let £ 0 be bounded. We can norm f without loss of genera~
iity so that ]‘rdv a1, Set g(x) = M'f(x), i.e. agg<h,
and suppose M’f 2 6 £, Then we have M'g(x) 2 6 M'f(x) =
= 6g(x), and hence Mg(x) 2 6 g(x) - db2g(x) (6 - d'b/e).
It is now sufficient to take J"> 0,Jb/a < ¢ , and to con-
clude that

Nm-n' < =) [VLLEO0 Jg£LO:M'L 2 CLumplig 2

zZ(E-¢)gl.

The last implication means that r,(f)&r,(g) + € . Conse-
quently @® M°) & @ (M) + & . Interchanging M and M’ we get

Ve >03d >0:lim-n’'l<dmmp o) - p(M)|<e.
Suppose now that n is arbitrary. It is clear that ® B is
the eigenvalue of M® with density m . As above we conclude
that 9“ is a continuous function of m,, and the same is
true for @ . Since m, depends continuously on m, we obtain
from here the continuity of @ on S.

The compactness of S and the continuity ¢ (M) on S

implies the existence of an operator M* € S such that

A
= = *
R Mm‘i% R(M) = R(M*),

It follows that R>0.
Theorem 4. ﬁ is the greatest among those numbers (3

for which there exists a function £§0 finite a.e. such that

(11) o purs .,

If R = R(M*) where M* € S, then relation (11) holds a.e.
for Q= R if and only if £ = cu(M*) a.e. where ¢>0 is a
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constant.
Proof. For the existence of such f we must have }3 &

€ R(M) for an arbitrary M€ S, hence f3 & min R(M) = f.
Let £ = c@.(l*) a.e. Suppose that

(12) w\‘lps aufif a.e,

doesn’t hold. Then there exists an operator N6 S such that
fNte £, But fM* £ = £ a.e., hence we can find, by Condi-

tion (ii), an operator P€ S with density p for which we ha-
ve HPL &£, Multiplying this inequality by R(P) » (P) and in-

tegrating with respect to x we get
R R®) [ »®)@)p(x,3)2(x)aV(y)av(x) =
= R »®)@)e(mavy) > RE) [ »(P)(x)£(x)aV(x).
This gives ﬁ>R(P), a contradiction to the definition of R.

Hence (12) is valid.

Suppose now that (12) holds for some functiom £ O finite
a.e. In particular k2 &f a.e. If MU*P = £ a.e. were
not true, then multiplying the above inequality by 2 (M*)
and integrating with respect to x we get

R [ »a*)ou* e(x)avix) = [ » ¥ )(y)e(y)aviy)<
< [ »(* ) (x)f(x)av(x),

This camot hold. We can change f on a set of zerc measure
A

to obtain (11) with 3 = R everywhere in X. From the unici-

ty of the eigenfunction corresponding to @ (M*) we con-

clude that £ = c@w(M*) a.e.
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6. In this section we shall study the set S of opera-
tors which satisfy the hypotheses of Section 4. S is sup-
posed to fulfil Conditions (i) and (ii) of the previous
section., We denote the corresponding convergence radius by
R(M) for Me S, and again we define R = inf ROM). X_, B (M)

etc. are defined as in Section 4.

A . A

Lemma 5. Let R = inf R (W). Then R v R.

Proof. We take M* such that ﬁk = R (M* ). As in the
proof of Theorem 2 we get

ReRM* )& R, (M¥) &R (M*),
It follows, for any natural k, that

osfeR, &R, so that Ry R*2 R,
For any operator Me S there is ﬁké R (M), so as k —» @ we
have R* & R(M). This gives R = inf R(M)2 R¥ 2 R, and the

proof is complete.

Now we shall prove an analogue of Theorem 4 of the pre-
vious section.

A
Theorem 5. R is the greatest among those numbers f3

for which there exists a function f & O finite a.e. such that
(13) B Mf< £ for all MeS,

Proof, Using Corollary 2 we obtain easily that such a
function f satisfying (13) cannot exist for (3 > ﬁ.
Let us prove its existence for f3 = ﬁ. The case ﬁ =0 is
trivial. Let f>o0. By Theorem 4 and by Theorem 1 there ex-

ists for any natural k a positive function fk on Xk such

that
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sup £, = 1, and RM P &£, for all MeS, i.e..

A

& [o®ane mane s,
:onsequently, by Fatou s lemma, for f = *}_:’.’m;’%f fk we have
RMf £ £ where we set fk = 0 on the complement of Xk in X.
Exactly in the same manrer as in Theorem 2 we can spow that
f is positive on a set of positive measure. Thus we have

found an ﬁ-aubinvariant function f for all Me S.

7. Suppose now that S is a set of operators satisfying
the conditions of Sections 5 or 6, and let {fni";:o be a

sequence of functions defined by the recurrence

(14) Tl = Mnfn, n=0,1,...,0 6 s,
where fo!-O is an arbitrary measurable function finite a.e.
We shall be interested in a. certain maximal sequence which

ie obtained by the recurrence

1(x) =Megpsmfn(x), x6X,

where 0+ ?o‘ f, amd £ is the function satisfying relatiom

(15) ?

n+

A
(11) with (3= R, existing by Theorems 4 or 5, respectively.
Under these assumptions, the following theorem holds,
which gives us an information about the asymptotic behavi-

A
our of the sequerce {f % .

@
Theorem 6. The series 5 £ (x)z", xeX, all have
—_— ms0 R

common radius of convergence R,

Proof. Suppose ﬁ>0, by induction it follows that
?ne ﬁ'nf, n2 0. Thus for O< z< R we have
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ngo ?n(x)znéf(x)m_%o P = £(x)(1 - /) l< 0.

This implies that every series has convergence rad+ .. not
less than R, This is trivially true if ! = o.
Now suppose that some series = fn(x)zn has convergence

radius R(x)> R. We take M* & S such that
(16) R4 RM* )< R(x),
anu construct the sequence

(a7 2= M*)PF, n=0,1,..., % =%.

By induction we find that & ?n’ nz0. Hence for the con-
vergence radius R(x) of the series =, ?u(x)zn holds R(x)=

Zz R(x). From (17) we have

[ a0
o In(@e = Eo 2" [ o (x,5)F (y)av(y) =

= [ 2 n¥ (2,057 (V).

But the series on the right hand side have for almost all
y the radius of convergence R(M* ), so we have R(x) & R(M* ),
Finally we conclude that R(x)<& R(x)& R(M* )< R(x), which is

a contradiction.
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