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COMШNTåTIOlШS MåTHlMåTICAl UNГШBSITATIS CAЮLШAE 

19,2 (197 ) 

ON THl PEIШON-FЮBШIUS TIШORI FOH SITS OF POSITIVS 

OPEBåTOШ 

Karel HOBÍK, Praha 

Abstract: In this note the Perron-irobenius theory 
for certainsets of positive integral operators is develo­
ped. Ihe asymptotic behaviour of iterated operators 

M11 is studied, and the existence of a global subinvariant 
function for the corresponding maximal Perron eigenvalue 
is established• Some consequences of this results are pre­
sented. 

Key words: Positive integral operator, Perron-Frobe-
nius eigenvalue, subinvariant function, compact sets of 
operators• 

AMS: 47-D99 

1. In paper f3J, in connection with a dynamic pro­

gramming problem, Perron-Frobenius theory for sets of non-

negative operators given by finite or eountably infinite 

matrices is developed. In this paper we generalize some re­

sults on sets of integral operators, te are concerned main­

ly with the existence of a global Perron eigenvalue and a 

corresponding subinvariant function. In a wide class of 

controlled Markov processes of the diffusion type to each 

stationary control strategy there corresponds a non-nega­

tive operator (potential). The assumptions of our theorems 
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are fulfilled for sets of potentials for a subclass of such 

processes. Thus, this note may be useful for the study of 

the properties of controlled Markov processes. 

Let us give a simple examples Diffusion on £ 0f 1) with 
2 2 generating differential operator d /dx • u(x) d/dx, with 

reflection in 0 and absorption in 1, has the potential 

(Mf)(x) -» L Q(y) / Q(s)"xds f(y)dyf 

where Q(y) * exp( f u(s)ds)f xv y « max(xfy). 

If we interpret here u(x) as a stationary control strategy 

from the class of all Borel measurable functions on £0,1) 

bounded by a given constant, we obtain a set of potei&ials 

fulfilling' our assumptions. 

2. Let X be a Borel set in IT and let V be a non-ne­

gative 0-finite measure on its Borel subsets. Let m(xfy) 

be a measurable non-negative function on XxX. We define 

operator M by 

(1) (Mf)(x) » fx m(x,y)f(y)dV(y). 

We shall say that operator M in (1) has a density mf if 

II ml -« • sup / m(x,y)d?(y) < oo * 
H 4 A n 

If we introduce the multiplication of densities by 

(2) m^o m2(xfy) = / m1(xfz)m2(zfy)d?(z)f 

then the iterated operator Mn has a density EL = 

= m»me . # # © m# 
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Definition 1. A function ^ not identically sere is 

called right eigenfunction of M corresponding to eigenvalue 

f if 

(3) f ^,(x) • Jm(xfy) fJU (y)d?(y) for all x € l , 

Similarly we define toe left eigenfunction P not equal 

zero a.e., namely by the relation 

(4) fp(y) • / V (x)m(xty)d?(x) for ?-almost all yeX. 

We recall that function f is said uniform^ positive 

if there exists a constant c > 0 with f fc c everywhere. 

For our purposes we need the following 

Theorem 1. Suppose 0<V(X)< oo , and let there exist 

a natural number n such that iflL is a uniformly positive boun­

ded function. Then operator M with density m has a positive 

eigenvalue ^ > 0 in absolute value greater than a.oy other. 

The corresponding eigenfunction #*, is bounded and uniform^ 

positive and the same holds about V a.e. Moreover $t, and P 

are unique up to a multiplicative constant. Let J*^n d? s 

1, then 

(5) mn(x>y) » fn^(x)P (y)(l • Q(&n))9 n — * oo , 0-* A-c:lf 

where A is independent of i, y. 

The proof with a slight modification can be found in 

[21. 

Definition 2. For functions f f g on X we write £hg 

if fig and f>g on a set of positive measure. 

Like in £23 it can be also proved that for the maxi-
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mal eigenvalue f holds 

(6) f = eup i€ > 0: 3 f 1-0 bounded; Iff > 6 t % • 

Lemma 1. If the conditions of Theorem 1 are satis­

fied then 

(7) f » sup inf |m(xfy)f(y)d?(y)/f(x)f 
* f M * 

where Iff(x)/f(x) » CO for f(x) = 0. 

Proof. We denote for a rb i t ra ry bounded function f fr-0 

r , » r , ( f ) » inf Mf(x)/f(x) f 

x x x 

(8) r 2 » r 2 ( f ) « sup i ® > 0: Mf 2* 6t 1 . 

Obviously, ^ « sup r2(f). Now it is r,.> r2. If it were 

r.< r2t then by (8) it would exist a & > r-̂  such that 

Mf £ 0 f . But for tf > r, there exists x t X such that 

Mf (x)/f (x)-c 6 . This is a contradiction. On the other 

hand, by (8) is r1(f)f£-Mff so we have **ACf)4 r2(f) for 

every f 1*0. This all gives our assertion. 

3* Let operator M have density m. ©ie following lem­

ma gives us an information about the asymptotic growth of 

densT ties HL as n — > eo • 

Lemma 2. If the conditions of Theorem 1 are satis-

fied then the infinite series 2EL m(xfy)z have the same 
TV * 1 n 

radius of convergence H » l/» for every x e X for almost 

all yc X. 

Proof. For the radius of convergence R of the series 
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2 mn(xfj)z
n we have from (5) for every x for almost all 

j 1/1 s limsup sfm^Xfj) * limsup f %f p(x) &(j) 

t/l + OCA1*)"* f • 

fhe following notion playe an important role in the 

sequel* 

.Definition 3. Let function f be positive and finite 

on a set of positive measure ¥..We call f ($ -subinvari-

ant for operator M with density m if 

(9) |JMf£ff Q & (l< m • 

Iterating this relation we get for (I-subinvariant 

function f ^thi[ktAt* If M i* an operator with density m 

and for some natural n is 0< &&m&b < w then we have 

for ft > 0 0 -c ftnm / f(y)d?(y) * ̂  ̂ M^f A ff hence f is 

uniformly positive. On the other hand for x such tl**t f(xk 

< CO we have fln/mn(xfv)f(y)d?(y).6f(x). Hence, f is fi­

nite a.e. 

Lemma 3« If R(xfy) is the radius of convergence of 

the series 2 . m^Cx^z 9 then for |3 > aup. H(xfy) there 

exists no (i -sub invar iant function. 

Proof. Suppose that there exists such a function 

Í 

then we have for (3 > |3 > sup R(x,y)j 

3A V*.y>rf(y)dV(y) '3i ^ J ^ ^ - w w * 
-* S L f(x)(/3//j ) «c **? * Biis contradicts the ineqpali-

ty ̂  > sup R(x,y). 

In the previous lemma we can take only /3 > sup. R(xfj) 
ty€ A 
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where ¥(A) > Of and the proof proceeie in the eame manner. 

Thue, we have 

Lemma. 4. If B(xfy) ie theiadiua of convergence of the 

seriee ^^ fl^(x9y)s f AcX f ¥(A)>0f then for (I >• emp* t(x,y) 

there exiete no ^-eubiavariaat function. 

Corollary 1. If the eoaditione of fheorem 1 are ea-

t i s f i ed and 1 ie the common convergence radiue of eeriee 

2 mn(x fy)zn
f then f o r (J > 1 no (1-eubinvariant function 

can ex ie t . 

4. Up to now we have etudied ©peratore with iensiti-

ee in the case of finite measure ¥ on X. Suppose for more 

general caee that Xc IT ie S-compact ani ¥ non-negative 

meaeure finite on compacts. Then there exiet X. compact auch 
m 

that X * ^U4 X^f VtX^J-c oo . We can choose X^ so that X^ c 

c X^+i* v ie * s -finite meaeure on X. If we are given an 

operator M with deneity mf we can for any natural k define 

operator M. with density ir ' where 

(10) irk'(xfy) « m(xfy)f (x,y)# X^x X^9 » 0 otherwise. 

In thie case we shall additionally euppose that the follow­

ing conditions are satisfied; 

(i) B is lower aemicontinuous on XxX, 

( i i ) V e » 0 I k e N : / * m(xfy)d¥(y)-< e, f xeX f 

( i i i ) 0-*tm(xfy)£ 0 k < m for every x a . e . on X^. 

theorem 2. Let X c r be ©'-compact and ¥ non-negati­

ve measure f i n i t e on compacte, l e t M be an operator with 
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density m which satisfies (i) - (iii). Let ̂  denote the 

common radius of convergence of series ^ ^ m ^ ' ( x 9 j ) z n 

where we define 

m^k)(xfy) * fK mCk)(x fz)m^y(.i fy)d?(2). 

Then for the radii of convergence H(xfy) of the infinite 

series S m^XjyJz11 holds for each x R(xfy) • R for al­

most all yf R
 s

 a lim R^. 

(k) Ppoof. !Ehe operatop M^ with density ar ' satisfies 

conditions of Theorem 1 because of compactness of X^ and 

because of lowep semicontinuity of m > 0 . The sepiee 

2, m^Hx9y)%n has the convergence padius 1̂ . * 1/p kf whe­

re f* k
> 0 *s *he corresponding eigenvalue. We have for 

any (x,y)c X**X 

4 k ) (x»y)^ i i i k + 1 ) (x f y)^m . a (x f y) f 

so that for the convergence radius H(xfy) holds 

l^i?l\+12:R(xfy)2rO and hence R ^ R2.R(x,y). 

Let ^ k be the right eigenfunction corresponding to the 

eigenvalue f»k by theorem 1 such that sup ^ k(x) « 1. 

We set j4ik
 s 0 on the complement of .XL in X. Then from the 

re la t ion 

v*k ( x ) s \ 4 m ( k ) (x f y) ^ k ( y ) d ? ( y ) 

we get by Fatou's lemma 

I 2 t < p ( x ) » liminf ^ k ( x ) 2 R f m(x,y) ^ (y)dV(y), 
>**€'-"-J* 0 0 A 
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i«e. 4̂ > JtH^ . Now we show that ft. is positive on a set 

of positive measure. Let Xy be such that V(Xp)> Of and 

f m(xfy)dV(y)^ f xiX. 
** X* 411 

We can take x k , k € K f such that 

\ * ^k(xk) s % / m(xk,y) ^k(y)dV(y) < 

« k i a(xkfy) ^k(y)dV(y) + J \/*x* \®T fK ^k(y)dV(y)+ 
/& '-* 

• * • 

Hence, ̂  j x (<u>k(y)dV(y)g jjp- f and we have for x # ^ f 

m(xfy)^a > 0 on X ^ x L . an inequality 

^ ( x ) ? ^ Jx m(xfy) ^ k ( y ) a v ( y ) £ ^ > 0f k2 r. 

We have shown that ̂  is an 1-subinvariant function. R(xfy) 

is obviously a measurable function on X>c X. Taking e > 0 

arbitrary and applying Lemma 4 we get R(x,y).2!:R - e for 

almost all y€ X. this gives l(xfy) - 1 for each x for al­

most all y. 

As an easy consequence of Lemma 4 we obtain 

Corollary 2. If the conditions of Hie or em 2 are sa­

tisfied then for (J > 1 there exists no $ -subinvariant 

function. 

Corollary 3> For operator M satisfying the conditi­

ons of Theorem 2 does exist an R-subinvariant function. 
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5. In this section we shall deal with the sets S of 

operators M with densities satisfying conditions of theo­

rem 1. The radius of convergence H corresponding to opera­

tor M € S by Lemma 2 will be denoted by 1(M) • Analogously we 

shall write J>(M)f ^(M) f *>(M). 

We define a distance in the set of densities by the 

relation 

II m - m'lt » sup f 1 m(xfy) - m*(xfy) I dV(y)f 
•X •'A 

and denote by 3)t (X) the metric space thus obtained. The 

set of operators will be identified with the set of densi­

ties S c "M (X) which will be assumed to fulfil the follow­

ing condition? : 

(i) S is compact in 2&(X)f 

( i i ) for any measurable function f bO ( f in i te a . e . ) f 

and any MfNcS there exis ts P e s such that Pffclff, Pf t Nf. 

In combination with condition ( i ) we shal l use the 

following theorem about the continuity of the eigenvalue 

on S. 

Theorem 3« Let there exis t a natural n and posi t ive 

numbers a, b such that for a l l Mc S holds 0< a^m | l(x fy) 6 

£& << GO . Then 0 i s a continuous function of m. 

Proof. F i r s t assume n * 1. Take M'c S and denote as 

in (8) r | ( f ) = s u p 4 f > 0:M#f 2 0 f % . Let M be such that 

it m - m' II «< cf , Then for g£ 0 bounded 

Mg(x) « M#g(x) + J* (m(xfy) - m'(x,y) )g(y)d?(y) * 

£ M'g(x) - of sup g(x) . 
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Let tyo he bounded, fe can nora f without loss of .genera­

l i t y so that J fdf • 1 . Set g(x) « M#f(x)f i . e . a*g .£b f 

and suppose M#f t ©* t . Then we have M'g(x) 2r € M#f (z) » 

« £ g ( x ) f and hence Mg(.c) 2 6 g(x) - «fb£g(x;) C€T - cfb/»). 

I t i s new sufficient to take cf > 0f d*b/a -c & f and to con­

clude that 

II m - m# 1-c #*- -> E Vf f-0 3g f0sM # f fc 6 f —*>Mg fc 

2r (€T-e,)g3 • 

fhe l a s t implication means that r £ ( f ) £ r 2 ( g ) * & • Conse­

quently m (M#) £ m(M) • t • Interchanging M and M# we get 

V t > Old* > Os lm - m# l <<T—» I y»(M) - jt>(M#)U fc. 

Suppose now that n is arbitrary. It is clear that ^ B is 

the eigenvalue of vF with density m^. 4s above we conclude 

that ® a ii a continuous function of iLflf and the same is 

true for m . Since m^ depends continuously on m, we obtain 

from here the continuity of jp on S. 

The compactness of S and the continuity J> (M) on S 

implies the existence of an operator M* § S such that 

I • min K M ) « K M * ) . 
MIS 

It follows that !>0. 

theorem 4. R is the greatest among those numbers {& 

for which there exists a function tfrO finite a.e. such that 

(U) sup (}Mf6f. 

If I * B(M* ) where M* € S, then relation (11) holds a.e. 

for p s» 1 if and only if f -* C(«,(M* ) a.e. where c > 0 is a 
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constant* 

Ppoof. POP the existence of such f we must have /f * 

*1(M) fop an apbitpapy McS f hence ft * min l(M) » 1. 

Let f » C(Ct(M*) a.e. Suppose that 

(i2) ^ fcr«t .... 

doesn't hold. Then there exis ts an operator N* S suoh that 

mtfrt* But H l * f » f a . e . f hence we can find, by Condi­

t ion ( i i ) f an opepatop P i S with density p for which we ha-
A 

ve JJPtfrt. Multiplying th i s _ inequali ty by 1(P) ?»(P) and in­

tegrat ing with pespect to x we get 

fi 1(P) Jf -»(P)(x)p(xfy)f(y)d¥(y)d?(x) » 

« fi/V(P)(y)f(y)dV(y)*H(P)/ *>(P)(x)f(x)dV(x). 

fhis gives l>l(P)f a contpadiction to the definition of !• 

Hence (12) is valid. 

Suppose now that (12) holds fop some function f frO finite 

a.e. In particular Ht*f St a.e. If W * f » f a.e. wepe 

not tpue, then multiplying the above inequality by i^(M*) 

and integrating with pespect to x we get 

I J* *>(M* )(x)M*f(x)d¥(x) « J l>(M*)(y)f(y)i¥(y)< 

< / *(M* )(x)f(x)d¥(x). 

This carnot hold. We can change f on a set of zepo measure 

to obtain (11) with |l * 1 everywhere in X. fpom the unici-

ty of the eigenfunction coppesponding to » (M*) we con-

elude that f * C(I4(M* ) a.e. 
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6. In this section we shall study the set S of opera­

tors which satisfy the hypotheses of Section 4. S is sup­

posed to fulfil Conditions (i) and (ii) of the previous 

section. We denote the corresponding convergence radius by 

R(M) for Iff S, and again we define R » inf R(M). X^, B^CM) 

etc. are defined as in Section 4. 

.Lemma 5. Let R^ * in£ 1̂ (11). Then J ^ R. 

Proof. We take M** such that f^ = I^(M* ). As in the 

proof of Theorem 2 we get 

J U R ( M * )£ J-^CM* )6Rk(M* ). 

It follows, for any natural kt that 

06 M£Mk+1^ 1^, so that Ŝ .4* R* 2 S. 

For any operator McS there is K ^ ^ R ^ ( M ) 9 SO as k—P oo we 

have R* t» R(M). This gives I * inf R(M)^ R* z, R, and the 

proof is complete. 

Now we shall prove an analogue of Theorem 4 of the pre­

vious section. 

A 
Theorem 5« R is the greatest among those numbers ft 

for which there exists a function f 1-0 finite a.e. such that 

(13) (|Mf£f for all M€S. 

Proof. Using Corollary 2 we obtain easily that such a 

function f satisfying (13) cannot exist for fl » R. 
A A 

liet us prove its existence for |S s R. The case R = 0 is 

trivial. Let H>0. By Theorem 4 and by Theorem 1 there ex­

ists for any natural k a positive function f. on X. such 

that 
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sup fk • lf and %^^ k^ *k for all M€S f i.e. . 

1^ |i(k,(xiy)fk(y)a?(y)lfk(x), 

consequently, by Fatou's lemma, for f * ̂ Liminf f^ we have 

EUtftt where we set f^ * 0 on the complement of 1^ in X# 

Exactly in the same manner as in Theorem 2 we can siwsw that 

f is positive on a set of positive measure. Hius we have 

found an M-subinvariant function f for all Me S» 

7. Suppose now that S is a set of operators satisfying 

n«o the conditions of Sections 5 or 6, and let 4tn$ be m 

sequence of functions defined by the recurrence 

(14) tn¥l » l^fnf n - 0flf...fl^« S, 

where f > 0 is an arbitrary measurable function finite a.e. 

We shall be interested in a., certain maximal sequence which 

is obtained by the recurrence 

(15) $n+1<x> =MBupsMfn(x), X.X, 

where 0«*f t 6 f f an§ f is the function satisfying relation 

(11) with (1= H, existing by Theorems 4 or 5, respectively. 

Under these assumptions, the following theorem holds, 

which gives us an information about the asymptotic behavi-

our of the sequence i f i » 

*® A 

Theorem 6. The series 2Lf„(x)z f xeX f all have 

common radius of convergence S. 

Rroof. Suppose H>0, by induction it follows that 

t ^lTnt9 n£0. Thus for 0< z<R we have 
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J S A -l>>«"-'-,<->> -2„ S"n-n » f(x)(l - z/H)-1-- <W . 

Thie iapliea that every eeriee hae convergence rad4*-.. riot 

leee than I. fhie ie trivially true if J « 0. 

Now suppose that some eeriee 35 f (z)sa has convergence 

raiiue R(z)>l. We take i * e S euch that 

(16) i.4i(M*)4i(i), 

anu conetruct the sequence 

(17) ? n - (K* )"fof n - 0,1,..., f0 - ?0. 

% induction we find that ?n<*-*n> nsO. Hence for the con­

vergence radius fi(x) of the aeries _£ ? (x)zn holds H(x)£ 

»K(x). Prom (17) we have 

J t o ?n ( x )» n ' S o -n / -5 (x,y)?0(y)dV(y) -

• f(JW (x'y ) j5n)?o<y )dV<y>-

But the eeriee on the right hand side have for almost all 

y the raiiue of convergence R(M* ) f eo we have !(z) *R(M# )« 

Finally we conclude that R(z)4 !(-t)£ R(M* )< R(x), which ie 

a contradiction. 
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