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COMMENTATIONES MATHEMATICAB UNIV1RS1TATIS CAROUNAl 

19,2 (1978) 

ON ROUGH NOBIS ON BANACH SPACES 

K. JOHN, ?. ZIZLEH, Praha 

Abstract: Rough and strongly .rough norms on Banach 
spaces are studied? their characterizations and duality-
properties are derived. Some results of M.M. Day and I.B. 
Leach and J.H.M. Whitfield on the existence of smooth norms 
are generalized. A short proof of a recent theorem of Ch. 
Stegall concerning Asplund spaces is given. 
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AMS; 46B99 

We consider only real Banach spaces. % a subspace we 

mean a closed linear subspace. 

Definition 1 ([103,till). A norm of a Banach space X 

is called to be rough if there is an e >• 0 such that for 

every xc X and of >• 0, there are x^XgjUcX, II x1 - x II *= ̂ T? 

I x2 - x I < <T , || u II = 1 with II x2 !' (u) - II X ll' (u) > e , 

where I z li'(u) denotes the one sided Gateaux differential 

of 11 » II at z in the direction u, i.e. 

1 z If (u) = lim t"1 ( || z + tul| - II z « ). 

Remark 1. The usual norms of C<0,1> and i^(N) are 

easily seen (tlOl) to be rough (use e.g. Proposition 1). 

Definition 2. If KcX is a bounded set and feX*, 

<f > 0, then the set K(f,/) «{xeK| f(x)>sup f - cT I 

is called a slice of K. If K c X * and f € X, then K(f,^) 
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i s called a w * - s l i c e of K» K i s Rentable (w* -dentable 

for KcX* ) i f for every £ > 0 there i s a s l i ce K(ffd") 

of K (w* - s l i c e K(ff <f) of K) with diam K(ff0T) -< e * 

Summarizing the known facte and some considerations in th i s 

paper we easily arr ive t© 

Proposition 1« The following properties of a given 

norm of X are equivalent; 

( i ) I * 1 i s not rough, 

( i i ) B* - the dual unit ba l l of (Xf 1*1 )* i s w* -dentab­

l e , 

( i i i ) For every %> 0 there i s an xi:Xf 1 x 1 = 1 with 

limsup l y | " 1 ( l ( x + y l + l x - y l - 2) *6 & # 
i^i-* if 

(iv) For every e > 0 there i s a n x e X , 1 x 1 * 1 such that 

whenever f f g^e X* f If^l = Ig^l * lf lim f^x) = 

= lim gn(x) = 1, then limsup Ifn - g^ 1 .6 e * 

(v) Negation of: there is an e > 0 such that for every 

x«X f 1x1= 1 and for every cT> 0f there is a v€X f Ivlic 

^ 1 with llx • tv 1 Z 1 x 1 + % I11 - <f tor any It 1 4 1 . 

Proposition 1 % The following properties of a norm 

|| • 1 on X are equivalent: 

(i) BjC X the unit ball of (X, | < I ) is dentable, 

(ii) 1*1* the dual norm of X* is not rough, 

(iii) for every e > 0 there is an x*c X* f % x* I s 1 

with limsup ly*| "1( » x* + y* I + 1 x* - y*J - 2) * e f 

(iv) for every e > 0f there is an x*# X* f | x*i * 1 

such that whenever x^, yn€ Xf lxnl
 s^¥n^ = 1- li»- ̂ ( x * '= 

= lim yn(x* ) = 1, then limsup Ixn - yQ (I A % • 

(v) Negation of: There is an £ > 0 such that for every 
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x * € X * H x * * = 1 and *o* every cf> 0 there is ft v * £ X*f 

|| v * J m 1, with II x * * tv *J 2 II x*)t * g I t I - cT for eve­

ry 111 m 1 . 

Definition 3« A norm 1 • 1 of a Banach space X is 

said to be strongly rough if there is an e > 0 such that 

for every xeX I x l » l there is a y e Xf || y II m 1 with 

lim sup t1( 1 x + ty 1 + II x - ty II - 2) z . %, « 

Bemark 2. The usual norm of ^ ( F ) is strongly rough 

if V uncountable (see Proposition 4 ) . 

Proposition 2. The following properties of a norm 

}| • % of X are equivalent: 

(i) II» 1 is not strongly rough, 

(ii) for every c > 0, there is an x€X % x II m 1 such that 

whenever II f-,11 = It f 2 (I = lf f-^x) = f2(x) = 1, then 

(iii) Negation of: There is an € > 0 such that for ever^ 

x f X II x II = 1, there is at u Xf II u II = 1 such that for 

every cT > 0 there are x., pXgfe X, |1 x, i s II x l| g s lf 

H x ± - x II < d* , i « 1,2 with Bx 1H
/(u) - llxgU'Cu) 2 t . 

(iv) Negation of: There is an e > 0 such that for every 

x c X II x I »1 there is a v t X, || y I .6 1 with l x + tv I £ 

* II x II + e I t I • 

Proofs follow easily by use of some ideas of E.B. 

Leach and J.H.M. Whitfield and standard duality arguments : 

First we show Proposition 1 • Propositions 2, l' can be pro­

ved similarly 

(iii)«=s-» (iv); is in fact contained e.g. in £21. We sketch 

the proof here for the completeness: 
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I f ( i i i ) h o l d s , then f o r every e > 0 t h e r e i s an x £ X , 

II x II = l a n d if > 0 wi th II x + y II + II x - y II ~ 2 £ 

.4 e II y II f o r II y II £ cT . Thus whenever fnl g n ^ X * f 

II fn l l * II gnll = 1 , l im f n ( x ) = l im g n ( x ) = 1 , then 

f n ( x + y) + g n ( x - y) .4 € II y II + 2 fo r H y II £ ef . There­

fo re l f n ( y ) - g n ( y ) U i*f + 2 - f n ( x ) - g ^ x ) * 2 e-oT f 0 r 

n ? nQ and II y 1 6 or . Thus II f - gn)\& 2$ fo r n 2 n Q . I f 

( i i i ) does no t ho ld , then t h e r e i s an e > 0 such t h a t f o r 

any x c X, It x 1 s l y t h e r e i s a sequence y n £ X \ 4 0 i f 

l im y n = 0 , wi th II x + y n II + II x - y n II - 2 > £ II y n II . 

Then t ak ing fn, gnfc X * , || fn « = H g n II = 1 such t h a t 

f n ( x + V = tt x * ^ n , ! * % ^ - yn> * » * - y n » 

we have l im f n ( x ) = l im g n (x ) = l f f (x + y n ) + g n (x - jn)> 

Z 2 + e- II y n ( | and hence (fn - S n H y n ) 2: 2 - f n ( x ) - g n ( x ) + 

+ e 11 y n II r £ ^y n l l i s o , ( iv ) does no t ho ld . 

( i i ) « = > ( iv ) i s e a s i l y seen} 

( i ) -a*^ ( i v ) : i m p l i c i t l y conta ined i n £113, p . 122: I f ( i v ) 

does not h o l d , then t h e r e i s an e > 0 such t h a t f o r any 

x 6 X, II x 1 = 1 , t h e r e i s a sequence f , gn€. X** , II fn | « 

= ltgnll = If l i m ^n^x^ = *^m ^ n ' x ^ " "^ a n d a 8 e < l u e n c e u n € Xf 

II u n l l = 1, wi th (fn - g n ) ( u n ) 2i e . So, i f 0-c ^ < S / 2 i s 

an a r b i t r a r y number, x e X , jlxfl = 1 and t . > 0 , then fo r n i> 

> n , f n ( x ) > 1 - " 2 ? A , g n ( x ) > 1 ~ *£ A f and thus l| x + 

+ t u II 2 f (x + tu )> 1 - ^ 2 A + t f (u ) . irom t h i s and n n n *» n n 

elementary convexi ty p r o p e r t i e s i t fol lows t h a t 

t II x + t u n IV (u n ) 2 » x + t u n » - II x II > t f n ( u n ) - t f A , so 

II x + t u n IV ( u n ) > fn Cun) - ^ 2 A t . 

S i m i l a r l y , - li x - t u IV (u )> - g^CiO - <*)V4 t . 
n 

Thus, choosing t£ (0,^) such that 1}/2 t -*- 1£ . we finally 
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have fix + t t i^l 'di^) - Itx - t u ^ X ' C V ^ f i i - « n H V " 

- % / i t > & - \ > e / 2 f so ( i ) does not hold. 

(v) «•* ( i ) i s proved in £111: If B • I i s rough with some 

& > 0, then given x € X, I x tl -» l f 1 > Of we can choose 

x l f x 2 € Xf n x± - x l < ^ f and ueX f | u ( « l f with 

I x2H'(u) - 8 x-^'Oi) £ €> . !Then putt ing v = u -

- C ( l x 1 l / ( u ) + ftx2l
/(u))/2JXf we have «v \U Z and i f 

s • 1 - t ( l x x r ( u ) + «x 2 !V (u)) /2 f t h e n O < e * r i for t £ 

€ (0,1) and 

II x + tv l t= lex + t v l * (0(X2 + ( t / s )u ) + s (x - x^) tt 2 

> s ( ttx2» + | ftx2ft
#(tt)) - s *n/+* s 1x11 + t I x ^ l ' ( u ) -

- s i | / 2 - I x l + t V l X l ^ r U ) - I x ^ I ' h O ) - s i j / 2 * 

fclxl+(t**/2)- n • 

If -1< t < 0, we ttse X., instead of x.-* and have 

II x + t v ! E t t x t t + ( - V i l ) ( | x 2 l # ( u ) - I x ^ ' O i ) ) - s<|/2 2. 

> 1 x 1 + im/% )% - *| • 

So, (v) —* ( i ) . 

If (v) does not hold, then there i s an e > 0 such tha t for 

any x c X , Itxl * 1 and for any nc N (N posi t ive in t ege r s ) , 

there i s * vn€ X, I rnt£ l with It x + t v n I * I 3CI + e 111 -

—2 —1 

- n for every | t t 4t 1. So, putt ing t * n f we have 

n( tt x + n " 1 v n l + I x - n " 1 vn« - 2) 2. % - rT
1> z/l for 

large nf so f ( i i i ) does not hold (see £113). 

For the proof of the other statements which can be pro­

ved s imi lar ly , we mention only a few remarks. 

1. In Prop. l ' f non ( i i i ) sof ron ( i v ) : choose fn, g^ as 

in Prop. 1 only fn(x + y n ) 2 I x + y n l - n I ynB , s imi­

lar ly g n . 
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2. In Prop. Z non (DM** ncm(ii) : use limit points of f , 

g^ constructed in the corresponding part of Prop 1. 

3. In Prop. 2 (ii) *•# (iii) follow (i)*—-*(iv) in Prop. 1 

choosing ff gcBj* f f(x) « g(x) * lf uiX, lull * 1 with 

(f - g)(u)2 f, • 

4. In Prop. 2 ( iv )—* ( i )s If 1 • I i s strongly rough for 

some $ > 0, then given xc Xf (xtt s 1, there i s a u £ X f | u | « 

= 1 such tha t for any n i N f there are *J f ^ c X , ^ ^ 1 ^ s *» 

| x f - x» -4 a""1 with I x J l ' U ) - Ix f l l^u) It t, . fhen as shown 

in t i l l (see Prop. 1) putting v n * u - C (1 *5 l ' (u ) + 

+ i x | l # ( u ) ) / a i » x, we have 1 v n | 6 2 and ttx + tv^ I 2 . t x | + 

+ ( m / 2 H - **/% t -for every I t 1*1 . Since v n €6p(x,u) 

(the l inear hu l l of 4x ful ) , llvnH*2 choosing a l imit ing 

point v of i ? } in the norm topology, we have t v | * 2 and 

II x + tv U as 1 x II + (111 / at) % for ewBTj 111 * 1 • 

Remark 3 . 2he condition ( i i ) in Proposition 1 cannot 

genera l^ be replaced by that ©f dentabi l i ty ©f B f c l * f s in­

ce as mentioned above, the usual norm of C<0,1> i s rough 

and B ? c C * < 0 , l ) i s easier seen (and cer ta inly known) to be 

dentable. Considering C*<0,1>-I ¥ < 0 f l > the space of a l l 

functiotts ©n <0 f l> with bounded var ia t ion, with f(0) -* 0 

and f r igh t continuous on (0,1 )f we easily see that for e .g. 
Jf -= */Q «*. the character is t ic function of (0,1>, <f ^ 

conv(B^\Be( <fQ)) (for every £ > 0 ) : If for some £ y 0, 

©^# e"onv(B1\ B§( otQ)t then there are v 1 - . . . . f v n « B * x B
e < ^ ) 

and c l f . . . f c n S 0 , S c . = 1, such that var( *0 - J V l ) * 

* 8/fl . Then for every t € (0 f l> there i s an i c 4 l f . . . 

. . . , n l w i t h v i ( t ) > l - £ / g . 

Thus there i s a j& 4 l f . . . f n f with limsup v^( t )2r l - / 8 • 
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Therefore for every a^Oi^*^ vj£l - E/d and thus, 

var v. £ **/S • 
«M» J i • / 
Therefore, var (v. • o V ^ */8 for each a€ (0fl> . Fur-

thermore, for every te (0A> f lv^(t) - l l < V 2 , other­
wise ;rar v4 > ^/8 for ̂ me yc (0fl> . So, fup 1 v. -

<f,4> J <0f*/> J 

- cf@ I* */2 and for ev#^ ae (0,1 > , warf> (vj - <T%) & 

* V 8 . Therefore, var (Vj - c/^x: c f a contradiction. 

Since the unit ball of C<0,1> is not even smoothable 

(for the definition awl this result see C9J), .Remark 3 ans­

wers negatively a part of the Question 4 in £ 9J the other 

part was recently answered in [123. 

Remark 4. There is an equivalent non rou#i norm on 

J^CP), V uncountable, with no point of Gateaux differen­

tiability. This is easy to see by a slight modification of 

a construction of M. Idelstein (£73f p» 111): 

-jet k e r $ t T \ be the usual unit vector basis in £n(V) (tg» 

the biorthogonal funetionals), {t } f n#N a sequence of 

disjoint elements of it^ J . 

Let \ « x € if (P )^m(V )| «x - (2 - 21"n)faI * 2
1" n j . 

IM% CQ « ̂ V l ( D n U ( " V ^ Cl * c o n v °o» C * * closure of 

C1# Uien 

(i ) C is a w* compact absolutely convex body in ^*(T")t 

Cc2 m£ ; 
(ii) C is w*dentable| 

( i i i ) C has no w* exposed point (x € K c X * i s w* exposed 

point of K i f there i s an f c X with f(x)>- f (y) for every 

ycK y # x ) . 

To see (ii) it clearly suffices to show that C, is 
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w* dentable. For t h i s purpose, -following t.73, p . 113, de­

note for a i N: En • -f x f C^ x(e n )> 2 - 21*"11 f . Then Hn i s 

a w* s l i ce of C ^ Fix now n c N and compute the diameter ©f 

Hm. Consider an arb i t ra ry h t H ^ , h s^ a C i h i f h^ * .U 4 D-U 

U (-Dj), e.|* Of £ Cĵ  » 1. Then write h %/§% e ^ + 

+ J t ^ % c i h i * E a s i l y t i f h i # \ > t h e » h i ( e
n ^ 1 # S @ » 2 " 2 l " ^ 

^ ( , 5 L c.h. +« 2L, e . h ^ H O - ^ S L c4h. (ew) +. 23* c, « 

^ S . c . t h . t e^ ) - 1) + 1 .4-Su. c. + l . Thus - S - c . ^ 1 -

- 21"11. Therefore, if h^H^, then for n2.2t 

Ih - (2 - 2 ^ 1 * I ^ V A ^ ^ " C2 - ^ 

+ 2 [(1 - 21"11)-1] + 2- 21"11. 

To see (iii) let us first observe that C^ * U (Di U 

U(-D.)) is w1^ compact. Thus any w* exposed point of C lies 

in C1 (Milman). But D. have no w# exposed points, since the 
X J 

usual norm of JL^( V ) is nowhere Giteaux differentiable, if 

V is uncountable (cf. e.g. Proposition 4). 

Before proceeding let us recall that a function f is 

said to be Giteaux diff erentiable at x€ X if lim t"1 [ f (x + 

+ th) - f(x)3 exists for each heH and is a continuous line­

ar functional on X. 

We will need the following version of Lemma 3.1 in £113 # 

Lemma 1. Let a Banach space X admit a strongly rough 

equivalent norm II • 1 • Then if f is a continuous Giteaux dif­

ferentiate real-valued function on X, f(0) = 0, then there 

is an xe X, l£ II x ll< 2 with f (x)£ % x % . 
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Proof. The same as that of Lemma 3.1 of tlllf we 

sketch it here only for the completeness: 

Choose a sequence X-€ X, x = 0 such that 

(i) f(xn)6fta^H| 

(ii) l-Vi-V*1* 
(iii) II -ViH * * *k + ( V 8 )IXL1+1 -a^l, 

(iT) 1 xn+1 - xj > \ Mn- \ sup I y - x̂ I f y € Xf y - ^ + 1 

satisfies (i)f(ii),(iii), where e is from strong rough­

ness of II» 1 # 

First obserTe that it suffices to show that for some 

nf H-sUl-S 1. Supposing I x^l^l for each nf we have i Ilx̂ i1 

convergent and thus 4x^1 convergent ((iii)) to some z€ Xf 

II z 11.61, f(z)^llz|| . By strong roughness of II * | f there 

is for z a vi.XfI|Tll^l with If z + tT I 2: t 2 II + Itls for 

I t 1 -W I z 1 . By Gateaux differentiability of f at z, there 

is ofe (0f 1 z 8 ) with f (z + tv)A f (z) + f '(z) (tT) • 

+ (V*) I tl for each It l< <^ . Choosing t » ± °^2 depending 

on the sign f'(z)(T) we have f(z + (d/2)v).6 f(z) + *%/}£ 

and H z + (°?2) v|l * fl z I + ̂ 4^2 . Irom this it follows that 

for large nf M^ t ^/Z , so, 1 x ^ - x n |l ̂
 fe<v4 f a con­

tradiction. 

Corollary. If X admits a continuous, Gateaux differen-

tiable real valued function f with bounded nonempty support, 

then X does not admit any strongly rough equivalent norm. 

Proof. ( 111!) If X admits such an f, then we can ea­

sily produce a continuous G&teaux differentiable function 

g with g(0) = 0 and g(x) = 2 for II x II 21 and receive a con­

tradiction with Lemma 1. 
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Applications 

Definition 4. A Banach space X is eall#d an Asplund 

space if each continuous convex function f on X is fr^chet 

differentiate on a dense Q^ subset of X. 

lemarlc 5. Beflexive spaces, spaces with separable du­

al (er mere generally spaces with TfCG dual) are Asplund 

spaces (tl33ff3JfC83). 

We can new easily show 

Proposition 3. A Banach space X is an Asplund space 

iff X does net admit any equivalent rou^h norm. 

Proof. Easily, rough norm is nowhere Fr^chet diffe­

rentiable (use e.g. Proposition 1). 

If X is not an Asplund space, then X contains a w*-compact 

convex set (we may assume K to be absolute convex body), 

which is not w* dentable (£133). This produces by duality 

(Proposition 1) a rough norm on X. 

from the preceding Proposition we can easily deduce 

the following result of Ch. Stegalls 

Theorem (Stegall). A Banach space X is an Asplund 

space iff each separable subspace Ic X has a separable du­

al. 

Proof. If X is not an Asplund space, then X admits 

an equivalent rough norm I • % (Proposition $). Then, ea­

sily, see till, p. 125 , there is a separable subspace XcX 

on which I • I is rough; Construct separable subspaces Cn, 

C c C +, and countable dense sets D^c C^ with the proper­

ty that C +, contains all the corresponding v *s from Pro­

position 1 (v) for each xeD and ô 's positive rationals. 
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Then easily, U C^ is the desired subspace X . X admits 

no equivalent Fr^chet smooth norm, by the result of Leach 

and Whitfield mentioned above (before Lemma 1). So, X* is 

nonesparable (ladeej Klee, fiestrepo, cf# e.g. C53)• 

If there is a separable subspace XcX with X* nonssparable, 

then X admits an equivalent rough norm (Leach, Ihitf ield 

i 111)• This can be seen as follows: Cle arly, there is m 

cT> O and an uncountable subset Dc B? such that f ,ge D 

f%g imply Hf - g II > <fm Since 3? satisfies the second axi­

om of countability relative to the w* topology, by deleting 

at most countably many points of D we receive D-, c J) all 

points of which are w# condensation points of D,. Thus IL 

is not w* dentable (here we followed CUJK Therefore the­

re is a w* compact absolutely convex body Kc X which is not 

w* dentable (K = B* + c o W * * ^ UC-D-^h % duality (Propo­

sition 1) we receive an equivalent rough norm on X. So, X 

is not an Asplund space and neither is therefore X ([133). 

In [41, M.M. Bay proved that J&AV)t V uncountable 

and m (N) admit no equivalent Gateaux differentiable norms. 

We state the following generalization of his results; 

Proposition 4» J-,(F), V uncountable and m (N) ad­

mit no continuous, Gateaux differentiable function with boun­

ded nonempty support. 

Proof. By Lemma 1 it suffices to show that both spa­

ces admit strongly rough norms. For JtniV) such a norm is 

the usual one: Given x € £A V ), ll x 11= 1 choose ±0 € V \ 

\ 4 supp x \ . Let 

f. * sgn x. for ic supp x, f. = 1, f = 0 elsewhere 
xo 
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g^ a sgn x± tor i t supp x, g^ * - l f g - 0 elsewhere. 

Then I f I » I g l * 1 f(x) = g(x) * 1, I f - g | * 1. 

For m (N) consider the following norm (£153) 

III x II * I x I + I xfl » where |xf means the usual nor* of m (N) 

and 1 x 1 = limsup I x^ I . We prove that Hlx III i s strongly 

rough. 

X f x e X , 1 x 1 * 0 , then for h± * ( -1 ) 1 and t > 0 f 

lllx t thill * I x t t h l + t . Thus 

limsup t""1 till x + t h ! + 1 x - thill - 2 III x I11 * 
t •+ o+ 

* lijasuR t " 1 [ lx + th t + I x - th I - 2 | x I + 2t 1 2 2 . 
i-frff* 

If I x I > 0 and lim I XL | * I x H f x^ have the same sign 

(say l ) f l e t b ^ * ( - l ) k
f h± * 0 for i + n^, k * 1 ,2 , . . . . 

Then limsup t " 1 L I x + th I + 1 x - th | - 2 I x 1 + II x + th 1 + 

+ l x - t h l - 2 1x1 3£iimsuo t " 1 ! l x + m l + l x - t h l -

- 2 | x | 3 * iimsuix t ^ C l x l * t + I x | + t - 2 f x I J 3 £ 2 « 

le finish the paper with a staple example and one ques­

tion. 

First we will need the following 

Definition 5. A subspaee I c X * is called 1-norming 

if for each x & X, | x I • sup (f(x)f f si, If 1*1) . 

Example. There is a 1-norming subspaee tcm(N) on which 

the usual norm of m(N) is rough. 

(Since the norm of m(N) is Fr^ehet differentiable on a den­

se Qtf subset of m(N) it is not rough on the whole space.) 

Let In be the family of all periodic functions on N, Then, 

easily, I = cl I^ is a closed linear 1-norming subspaee of 
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m(N). 

If ye I 1ly II - 1 and % -> 0, then finding y1* 1^ with 

ly • y II ̂  * we see that there are two indexes i,j,i4» j 

withty« > 1 - e fiy x > 1 - % • From this we derive that the 

norm of m(N) is rough on X and that the unit ball of i^CN) 

is not X dentablte (i.e. by slices given by functionals 

from X) This can be compared with the result of Charles 

Stegall who proved that if any bounded subset of X* is den-

table , then any bounded subset of X* is w*dentable (1163). 

The following seems to be an open problem 

Question. Suppose that any w* compact convex subset 

of X* is dentable. Is then X necessarily an Asplund space? 

Bemark and acknowledgement. After the present paper 

was prepared for publication, Professor R. Phelps kindly 

informed the authors on the preprints til,£203,£l93 some 

parts of which overlap with some parts of the present pa­

per. For example they prove the equivalence (ii) and (iii) 

in Proposition 1 and also give an alternative proof of the 
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