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AN INFINITE COMPANION MATRIX

Vlastimil PTLK, Praha

Abstract: An expliecit formula is obtained for the
entries of the powers of the companion matrix of a polyno-
mial P in terms of the roots of P,
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1. Introduction. In the course of his investigations
of the connection between the norms of powers of operators
and the spectral radius the present author introduced, [2],
for each polynomial P, an infinite matrix T whose columns
are the solutions of the recurrence relation with charaete-

ristic polynomial P and initial conditions

1, 0, y  eee
0, 1, y  eee
0, o, 1, ... O

The problem considered in [ 2] was the following: to find,
among all contractions A on n-dimensional Hilbert space
whose spectral radius does not exceed a given number p<1,

the operator for which | A"| assumes its maximum.
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The main result of [ 2] was that this maximum is assu-
med for the restrietiom of the (backward) shift operator S
to the subspace Ker (S - p)n or,zz, the space 6f all squa-
re summable sequences of complex numbers. For the proof it
was necessary to express the solution of the recurrence re-
lation in terms of the roots of P and it was essential that
the polynomials in the roots of P which appear in T have
coefficients whose sign depends only on the column index
(with the exception of the first n rows). The present aut-
hor proved this for the first column and formulated the ge-
neral case as a conjecture. At the author’s request the la-
te Professor V. Knichal supplied a proof which, unfortuna-
tely, was never published nor recorded. Since recent inves-
tigations require even more precise information the author
proposed this as a problem in the functional analysis semi-
nar. Three independent solutions were given almost simulta-

neously by N.J. Young, Z. Dostdl and the author.

2. The matrix T . We introduce the following nota-

tion:
ey e e

= 2
A (xl""'ﬁ) =x) x, cee Xy

n

the sum being taken over all sequences e‘_j with Oﬁejﬁl and
Sle. =
eJ i

e 82 e

hy (Xgyee0,x) =% 1 X, cee Xp n

the sum being taken over all sequences of exponents e 3 with
ejﬁo and Eej =i. Now let ©¢cq,..., &, be given complex

numbers.
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We write

P(z) = (2 - &q)eeelz = o)) =2, 2" + an_lzn'l + cee + 8y
Q(z) = 2" P(-l‘-) = (1 - ®q92)e0e(l - x2) = aozn + alzn'l +

T o

= = n-i
where a = 1, a; = (-1) E _; (€q1y000y o) and

P.(z) = (z = «q)eee(z - <) l&rén
1 [0} coe Q
Q oo 0
T =
o o 0 LN 2 1
-xo —xl —dz eoce -aCn

The matrix Twcorreaponding to the polynomial P was defined
[2] as follows (we change the numbering of the indices
slightly). The matrix T%® has n columns numbered O, l,...,
n - 1 and an infinite number of rows 0,1,2,... . The j-th
column is defined to be the solution of the recurrence re-

lationm
Xrin ¥ 8n-1 Xpap1 e 8 % =0
with the initial conditiom
Xy =0y X3 = 0yee0 X5 = 1yeee X 9 =0
We have seen that T® possesses the following simple pro-
perty: given any m = Q,1,..., the matrix consisting of the

n consecutive rows of T starting with the m-th row is ex-

actly T, Another useful property of T is the following:
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for any r = n the power T may be expressed in terms of
r°, m1,...,7 1 as follows
Tn-l

TN =g, g T+ b, T2+ oo+t

ro r,n-1

If we assume that all |«; | < 1 we can identify the columns
of T with certain B® functions as follows

£.(z) = = r
o = -
3¢z r=0trJz

To obtain explicit expressions for the coefficients trj in

terms of the o¢’s we observe [ 3] that the definition of £;
may be expressed as follows. The requirement that the se-
quence t, ., r = 0,1,... be a solution of the recurrence re-

lation is equivalent to the requirement that

(%) P(S) £, = 0

where S is the backward shift operator on Hz

(S p)(z) =1 (p(2) - pto))

The initial condition for fk may be replaced by the requi-

k4 2" 8y for some g ¢ Ha. We have

w, (2z)

rement that fk(z) =z

seen [ 3] that (x) implies fy(z) = for a suitable po-

lynomial w, of degree £€n-1, Rewi'iting the condition for
rk in the form

w(z) _ Q(z)

R zn zn

2 + Q(z) g (z) =

= X P(%) + Q(z) gk(z)

we see that - to meet this requirement - we must set
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w (z) = a/ 2 + a, K L4 84y Zn-1
8o that
zk n-k-1 3
la) = == J-E:o n-j 2

n-1
Define F(y,z) = tzo i't(z) yt. It follows that

(2) F(z,2) = 5 wo(2) gt = B (yoyt T 3
Q(z) F(y,z) = welz) y= = yz a .zY=
7 t=0 * £=0 j=0 n-=J
n-1 ; n=j=1 n-1 . 1 - (yz)n"j
= = an s zd = (yz)t = S an__ z9 —
j=0 B~J 1=0 §=0 J 1- gz
whence
n-1 . .
(1 - yz) Q(2) F(y,z) = 'SO 8 (z9 = 2Pyl =
J=

= Q(z) L Zn P(y)o

Now use the formula.

Py Py eee Pp =3 92 ««¢ 9y = (P} = q3) Py eeu pp +

* 93P = Q2)P3 «ee Py * Q3 Gy (P3 = q3)P, eve Py * 9 Qpe-e

s+ n3(Py = qp) for p; = 1 - «;z and 4 = 2(y -o¢;) 80 that

Py -4qy = 1 - yz. Hence Q(z)F(y,z) = Py +es Py + QPyecePy +

Q1QzP4 *ee Py + Qg eeo Qg Pp + Q) <o 9 and

l q q q q q LN ] -
F(y,z) = —— + =2 4 22 22 . 71 72 LcAee9na
Py Py Py Py Py P1P2p3 PpeeePy

cee

1 zPl(y)
+ +
1- «.12 (1~ ‘1 z)(1 - “.22)
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22 Pz(y)
. )
(1 - oclz)(l - eyz)(1 - ec3z)

+ e,

n-1
z Pn_l(y)

+
(1 - “flz)(l - “22) see (1 - “vnz)

where P (y) = (y - ocl) vee (y = &) =
=2 (1Y E_(« o) ¥

- Bl g eee Xp)y

k=0
Since fk is the coefficient of yk
o

£ = =2 — (-l)r-kE ( &€q eoe )
k n“l:r;k ploo'pﬁl r-k 1 r

in this sum we obtain

2X 2XT1

= - El( Xq eee X
PyeeePgs1  Proe-Pra2

xe1) *

L k*2 1ok g0-1
N | =
Ex( @ jeee ot o) +eee + (-1)

PyeeePys3 PyeeePy

Bpe1-xl % eee opy)
To unify the formulas it will be convenient to define the

binomial coefficient ( a ) to be zero if a<hb,
' ‘b

The rest of the paper is purely combinatorial. We shall

need the following lemma.

(2,1) For each pair of integers 0£ j4q - 1 the following

relation holds.

(LI L) s )
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(-1 ( q}: .
(]
Proof. Denote the expression on the left hand side
of the above equation by x(q,J). We shall use the well~-
known fact that the binomial coefficients satiafy the fol-

lowing relation
a a a+1
+ = for 04bfa - 1
a b+1 b+ 1
Now consider the first two terms in the expression for
x(q,Jj). Since

qQ-1 q q-1

J J -1
we easily obtain the relation x(q,Jj) = -x(q,j - 1). Since
x(q,0) = O the lemma is proved.

Now let j(O&£j&n - 1) be fixed. Set

B ( €y eee oC,)
8 * (-1)%-d LA 1 . for tZj
pl XK} pt+l

= 9 J+1 n-1
8o that rj z gd+z gj+1+ see + 2 8n-1

and

Y2y T Bj,r-3 * Bjr1,r-j-1 * o0t Bnel renely
8o being the coefficient of z® in the expression of g, .

We have

= t- ' '
81‘.,1‘-1’. = (-1) dxt_j(ul,-oo, “t)hi"‘t(“l’...’ “t'Fl) =
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= (-1 Zae e,,,) o, %1 oy, b
== MerreeesCyy/ Fy L ocee Ky

the sum being taken over all sequences of exponents
©1s eeey ©4,9 Whose sum equals r - j; all coefficients
7, are nonnegative integers. Summing the contributions

from the different g, we see that
ty = = cjr(m)m
the sum being extended over all monomials of the form

e e
Xy Lo Xpn Dyith = e =r - j. Our nain result is

(2,2) For each 04£Jjén - 1 and r2n

. -1
-j=1 q

e (eny sesye ) = (=1)07Y ( )

Jr*T1? '"n n-j-1

where q is the number of positive elements in the sequence

8y svey ©

n
Proof, Let us first observe that the coefficients ¢

do not change if we replace the sequence €1 eeo € by any

permutation of the e’s. Hence given n, r2n, O4& jén and

1£q%n we may limit ourselves to the evaluation of

°ji-(°1’ oo g 0, «e.. O) where the first q emtries are

all positive.

Consider a fixed t, jét£n - 1 and determine the coeffi-

cient with which the term

ey e

q r-t
°°1 cee ch 2

appears in the expansion of 84 Since all €yeeey eq are

>
.
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to be positive, we must have t + 1&q (the denominator of
g, being py ... pt+1) and t - j&q (the numerator of g
being By_; ( o€y «ss o)) otherwise we either have too

few o« '8 or too many. Hence contributioms can only be ex-
peeted from the 8 with

max (j,q - L)&témin (Q + j, n - 1)

e e
Consider a fixed t 2 Jj. The contribution to o<y i ven °‘q Q
from 8 is clearly
- q
(-1)t-3 ( ) if t2q
C(t) = t -3
1o qQq-1 -1- q-1
(-1)‘11-’( )=(-1)q15( )ift=q—l
t -3 J

and, of course, zero if t<«q - 1. We have thus

min(q+j,n-1)
c.. = C(t)

Jr max(j,q-1)

To compute cir we shall distinguish two cases.

(1) Consider first the case j&q - 1. We find first that
C(Jj) = 1 so that

nin(q+j,n-1) min(q+j,n-1) o q
= R cey = B L ( )
=9 t=J t -3

8=0

in(q,n-1-J)
SR e ()

8

The last sum is zero if Q&n - j - 1 or, using lemme (2,1),
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q -
e ()

n-;]_l
ifn-J-1<q

(2) if j<q ~ 1, we have

min(q+j,n-1) ) Q-1
= " C(t) = (=1)°1-j ( ) .
t=q~-1 3

+ Bin(a+d,n-1) 1yt ( q )
t=q t < B

t=q

. (31 =1 3 .

qQ+Jj-t

q9-1 P q
= (-1)371-d ( ),, Ypdineg-1) (y)e4a-j ( >
-8

j 8=0

The last sum is zero if jén - q - 1 by (2,1). If n - q -
= 1< J the last sum - again by (2,1) - equals

- é (-1)3%8-J ( g )s-c-l)“'-"( a-1 ) =

8 n-q J~-8 j-(n-gq)

= (-1)n-3-1 ( Q-1 )
n-j=-1

The proof is complete.

3. We conclude by stating another formula which yields
the qualitative statement about the signs of the elements
of 7% jimmediately. The functiom
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n-1 1-3"s"
G(z,y) = = (£, (z) - X) yk = F(z,y) - I =
k=0 l-ys
n
& n
= (y° Q(z) - P(y))
(1 - yz) Q(z)

pay be transformed (using again the formula for the dif-
ference of two produets) to the following form

n-1 n-2
YT %y " BO

G(z,y) = &° (
Py P P2

Py P2 P3 Py ees Py
whence
1 R %y Y2 (3 + )
(-1)™* a(z,-y) = z ( —=
P Py P2
n-3
e R A UL L

Py Py P3

cee +

oy (7 + X)enaly + “g-l’)

Py e+ Pp

and all coefficients of the expansion of the right hand

side are clearly nonnegative.
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