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NORMS OF CERTAIN RATIONAL FUNCTIONS OF A MATRIX AND SCHUR’S
CRITERION FOR POLYNOMIALS

N.J. YOUNG, Praha

Abstract: A theorem of Schur asserts that all the
roots of a polynomial p are of modulus less than one if and
only if a certain Hermitian form derived from p is positive
definite, It is shown here that there is a wide class of
Hermitian forms with the same property. The proof depends
on the following fact: if g is a rational function of the

form g(z) = p(z)/z"p(1/z)” and A is an nx n matrix satis-
fying rank (I - AX A) = 1, AW £1 and having spectral radi-
us less than one, then lig(A)ll<1 or Wg(A)ll>1 depending on
whether or not ail roots of p lie in the open unit disc
(@' l\)) denotes the operator norm on n-dimensional Hilbert
space).
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In 1917 I. Schur wrote a paper [ 5] on a subject which
at that time interested many mathematicians, namely, the
relation between the H® -norm of a function and its Taylor
coefficients, Schur’s paper is still cited for two reasons:
firetiy, it is the source of the formula for the determi-
nant of a partitioned matrix which is known as Schur’s for-
mula, and secondly, it contains his well-known criterion for
a polynomial to have all its roots in the open unit disc.

These were, however, merely a lemma and a corollary of the
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main results, and the paper must be judged to have led to

a dead end. Apart from a slight further development by Ne-
vanlinna [ 1], no further use seems to have been made of the
algebraic techniques developed by Schur. And indeed, many
facts obtained in the paper by laborious algebraic computa-
tion can be seen much more easily and naturally by means of
the geometric and analytic approaches now familiar to us,
but which were in their infancy in 1917. For example, a{ter
fifteen pages of mighty wielding of determinants Schur arri-
ves at a result (Theorem X) expressible in modern terminolo-
gy as follows: if g is a formal power series then the norm
of the operation of multiplication by g, thought of as an
operator on the Hardy space H2 of the open unit disc, is e-
qual to the H® -norm of g. Nowadays this fact is almost ob-
vious: it can be proved in a few lines with the aid of the
Poisson kernel. But all this is not to say that Schur has
been superseded entirely , for his methods als o yield at the
same time facts which are not at all so obvious to modern
eyes., Such are, roughly speaking, finite dimensional versions
of results of the above type holding for special classes of
functions g. Here is an illustration. Let g be a given by a

formula

where p is a polynomial of degree n, and let S, be the shift
operator on n-dimensional Hilbert space:

Sp(xqyeeesXy) = (X5,000,%,,0).

Then g is bounded in the open unit disc if and only if g(S,)

is a contraction. The criterion for polynomials mentioned
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above is a corollary of this fact.

Generally speaking questions about operators are easier
in finite than in infinite dimensions, but here we have to
deal with questions which gain their interest from finite
dimensionality, and are trivial in the infinite-dimensional
case. In view of the fact that our understanding of Schur’s
main results gains so much in simplicity, clarity and gene-
rality from a functional analytic approach, it is natural to
look for a similarly advantageous treatment of problems of
the latter sort., This article makes a contribution to this
programme,

Problems of such a nature have in fact been handled geo-
netrically, but only relatively recently. One of the earli-~
est examples is the paper of V. Ptdk [2], where it is proved
that if A is a contraction on n-dimensional Hilbert space ha-
ving spectral radius less than one then A" has norm strictly
less than one. Several other proofs of this fact have been
published since: references to them can be found in 1L31. We
begin with a generalization of Ptdk’s theorem. The symbol
l » | will denote both the norm of an element of a Hilbert
space H and the operator norm of an operator on H, while

lAlg will denote the spectral radius of an operator A on H.

Theorem 1 Iet Ay,A,,...,A  be commuting linear opera-

tors on an n-dimensional Hilbert space H, and let \Aije < 1

ggg\\Ai\lé for each i. Then |[A; A, ... A <1,

This result has already been proved and used [6], but
the orod is very short and is worth repeating since it should

make the sequel easier to follow.
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Let us first recall the fact that if an operator A on
H satisfies fAfl £ 1, then fx: f|Ax/l = fxI} is a subspace of
H; for we have I - AKX A>0, 8o that I - A* A has a Hermitian
square root, and consequently
TAxll =l x || ¢<==> ((I - A¥* A)x,x) = 0O
(=5 I1(I - ax0)/2x (2 = ¢
=>xeKer (I - A% 4)1/2,

We xay thus introduce subspaces V;, O£i4n, of H defined by

(1) Vv, =(H it i =0;
{xeH: lA; A, ... Aixl=lxll} if i>o0.
It follows from the commutativity ef the A's that Vi+1s Vi.
We show that if V,#% {03} then vi;bl is in fact a preper sub-
1 ]
space of Vi. The restriction of Ay to Vi is an isometry fer

each i, and thus, for eri+1,

WAy ooo AAy poll = Bxl=0Ay, xl,

which implies that A; .X€V;. In other woerds, 4, .V: ,EV;.
If, for some i, V; ., = V; % {03, then V,,, is a non-trivial
subspace of H, invariant with respect to Ai+1’ on which “i+1
is isometrie. It follows that Ai+1 has an eigenvalue of unit
modulus, contrary to hypothesis. It follows that the sequen-~
ce H2V, 2V, 2... descends strictly until it reaches {0},
and hence Vn =4$0% . This implies the desired conclusion
WAy Ay oo0 Apll<l.

The main result of the paper is in & kindred spirit,

Theorem 2. Let p be a polynomial of degree k=1 having

no two roots conjugate with respect to the unit circle and

let g be the rational function given by the formula:
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(2) (z) = —E—-ELL—‘
g p(1/m)”

z

let A be a linear operator on an n-dimensional Hilbert space

H satisfying Al £ 1, fAlg < 1 and rank (I -A%A) =r, If

rk<n, some root of p has modulus greater than one ami g(A)
is defined, then lg(A) Il > 1.

It sheuld be emphasized that the hypothesis on the roots
of p is suppewed to include the condition that ne root be con-
jugate to itself, i.e. be of unit modulus. The hypothesis thus
implies that the expression (2) for g is in its lowest terms.

g(A) fails te be defined exactly when an eigenvalue of A
eoincides with a pole of q, or in other words, is conjugate te
a root of p with respect to the unit cirecle. This can of cour-
se oceur since the eigenvalues of A lie inside the unit cire-
18 while p is supposed to have a root outside it.

Proef of Theorem 2., We can suppose that p is monic. Let

p(z) = (z - % 1)(2 = o£z) «oo (2 - axy),

and suppese that g(A) is defined. This means that I - c'(:jA is

non-singular, 1< j<k, so that we can introduce the operator

Aj given by

= - - o -1

We have then

g(A) = Aj A, .o A,

and the Aj ‘s 21l commute. We wish to introduce a descending

sequence of subspaces of H, uch as in the proof of Theorem 1,
but the definition (1) will no longer serve since we are dea-
ling with AJ- which need not satisfy |l Aj | £1. It turns out
that a somewhat more complicated definition is appropriate.
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For any subset & of {1,...,k} let Ag 3513‘, Aj (A¢ being
defined to be the identity operator), and let
(4) Vi = (H ifi=0
{xeH: hAg x| =lxll for every £c4{1,...,i}}
if 1£1<k.

lemma. (i) V; is a subspace of H of dimension at least
n-ri, 0O£ifk.

(i1) V; is a proper subspace of V. ;, 1£i%n.

(iii) If x€V;_ \V;, 1<ifn, then lAjA, .00 Ayxll$
#lxl.

Proof of Lemma., It is an immediate consequence of the
definition of V; that the left hand side of the following

identity is contained in the right hand side:

(5) V5 =V, , nfxeH: la;xl=Nxl}n Agl v

i-1°
Now consider any element x of the right hand side and any
subset 6 of {1,...,i}. If i & & thenllAgxl= x| since
X€V, ;. Otherwise we may write & = ® u {i}, ¢ e41,...
ceeyi = 1%, and (since the AJ- ‘s commute) Ag = A A;. Since
A;xEV, _, we have lAg x U=t A;xl=la;xl=lxll. Hence
xeV, and (5) is established.

Despite the fact that A; need not be a contraction, it
is still true that £x: lA;x f=NxH3} is a subspace of .H. This

can be inferred from the M8bius identity
- %A = .= - *)~lop _ ak =zt
(6) I A3A; = (1 °‘i°‘i)(I o A ) (I - A*A) (I ucil)

which shows that I - A’.: Ai is either positive or negative se~
mi-definite, depending on whether lac;|l<1 or loc;1>1, and

hence that either I -~ A’; A,

E3 - .
j or Ai Ai I has a Hermitian
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square root. The standard argument given in the proof of Theo-
rem 1 therefore applies, It is now easily seen with the help
of an induction argument that Vi is a subspace of H for each
i,

Te prove the st#ement about dimensions we establish an
altermtive description of V. For 1£i, j&k let 2(i,j) de-
nete the number of indices £ in {1,2,...,i} for which «p =
= i thus »(i,j) can be zers if j>i but 2(i,jle 1l ir
J4i. We shall shew that, for 1£ifk,

() ¥y ={xeH:i(X - #A)(I - ZA)Vx = 0,
1£j£4i, 1£ & »(1,J)%.
In the case i =1, %(1,1) = 1 and, since I ~ A"{ A, is
seni-definite,
vy =4{x:((I - A’{ A )x,x) = 0}
={x:(I - A% A))x = 0}
= {x:(I - #ANI -%A) 7 1x = 0}

(the last step being by virtue of (6)), so that (7) holds.
Denote the right hand side of (7) by W; and observe that
- - A% = ay-»(1i,1)
(8) Wy =W, jnKer (I - A"A)(I -<A) ’
so that, to establish (7) by induction, we must show that,
for xeW; ,, 2éi€k, WA; Axll= WxH§ for every subset €
of £1,...,i - 1% if and only if
(I - ) (1 -Za) ™My = o,
Consider, then, x&W; ; =V, , and 6 & {1,...,i - 1}.
By definition of V; ,, NAgxN=Uxll and se BA;Ag xIl =Wx !l
if and enly if lA; Ag xll = lAg x N, or equivalently,

(A% (1 - &Y A)Ag x,%) = 0
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or, by virtue eof (6),
(9) % (1 -adh®)7HI - AT - Za) g 3,0 = 0.

New (I -E'ciA)'lA‘ is a rational function ef A; its de-
neminator is ef degree one more than its numerator, and the
factor (I - 'e"ojL) eccurs in the denominator with an expenent
which depends on the number of indices L e & v {i% for which
&g = ecj. It will be seen that the partial fractions expres-
sien for (I - ;Zik)'llg can be written

¢

hd

- 2 y=1 - — y=»(J,Jd)
(10) (I -;h) “Ag _—'a-§4 ej(I -ech) '

where Cyrees,Cy arE scalars depending en 6 ., Substituting

(10) in (9) we deduce that lA;Ag xll Zllx|| if and enly if
< . .
. -z ary~205,3)
(11) ?'E4 €5y (1 L )
(I - AT - g 07 B8)x x) = 0,
Since x& W, ; 2ll the terms in (11) for which j<i er L=<i

vanish (this follews from the inductien hypethesis), and (11)

reduces to

legl 20T - ey (1 oy (1 ~Z 0 X ey 1) = 0

and hence te

(12) e4(I - (I -c‘ciu""i'i)x = 0,

It is new immediate that if X €W, then “Aité i =l x|
for all § €{1,...,i - 1}, and hecne x&V;. To prove the con-
verse, let xeV; and choose & to be {1,,..,i - 1}. Then in
the resolution (10) of (I —'e'iiA)"lAs into partial fractionms

we have c.$ 0. To see this regard A as a scalar variable far

- 680 -



the moment and noticé that the left hand side of (10) has
a pole of order »(i,i) at A = 1/&C; (this depends on the
hypothesis about the nen-conjugacy ef the o« 's, which ensu-
res that ne cancellation can take plase between numerator
and denominator). The same must be true of the right hand
side, and this can only be so if c;#* 0. Since xeV; ,

| A;Ag xU=1xl and therefore (12) holds, and since c;%0
we have (I - A¥A)(I —RiA)"’(i'i)x = 0, It follows from (8)
that xévi. This completes the proof of the identity (7)«

Statement (iii) ef the Lemma also follows frem the abe-~
ve argument. If xeV, , andflA; ... Ajx l=0x}l then, as we
have just shown, (I - AFA)(I -;il)—”‘i’i)x = 0. But now

that (7) is proved, we can rewrite (8)

(13) V; = V,_jnKer (I - MA)(I -ga) i)

Thus xe.vi.

The relation (13) shows that the codimension ef V; in
¥;_; is ne greater than the rank of I - A*A, which is r. Thus
dim V; > dim V; , - r, 1£i4k. Statement (i) follows at once.

The remaining assertion of the Lemma is justified much

as in the proef of Theorem 1, By (i),
dim V; ;2n-r(i - 1)Zn-rk + r2r,

New r cannot be zero, else A would be unitary, contrary to
the supposition |Alg <1. Thus V; _, is & non-null subspace,
l&ikk, From (5) we have A;V,EV, 4, 8o that if ¥, =V, ,,
Vi is a non-trivial invariant subspace for. Ai and Ail Vi is
an isometry. Thus ‘i has an eigenvalue of unit modulus. How-
ever, referring te the definition (3) of A; we perceive that

the eigenvalues of A; are of the form (A,-coi)(l -o—cia,)'l
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where A (being an eigenvalue e¢f A) is not of unit modulus.
It is well known (and easily checked) that (A -ecs)(1 -3612.)-1
cannot then be e¢f unit medulus either (when |oc;i#1, as he-
re). This contradiction shows that Vi#V, ,.

We can now conclude the proof of Theorem 2. We can suppo-
se that |, |>1. By (ii) of the Lemma there exists xe V) _;\

\ V.. For such an x
WA, Ay oov A xN=Ux )l but, by (iii).
WA, &) & oo a xlElxl.

Thus, if we write Ay Ay .oo Ay x =y, we havellA vl & Nyl .
Now the M¥bius identity (6) (with i = k) shows that I - AY Ay
is negative semi-definite, which implies that lA,ull = flull for

every ueH. It follows that fAy ! >Nyl =UxN. That is,,

A Ay & oo A x> Nxt,

Henee ﬂAl Ay ooo Ay I >1, as required.

Corellary. Let p be a polynomial of degree k which is
relatively prime to the polynomial q defined by

q(z) = X p(1/z2)" .

Let A be an nxn matrix such that |[Ajg <1 and I - A¥4 is

positive semi-definite and of rank r. If nZ rk, the Hermiti-
an form H(s ) on C°
Hx) =lq)xi2 - tpmxi?

is positive semi-definite if and only if the roots of p al

have modulus less than one.

Proof. Suppeee H(+ ) is positive semi-definite. Under
these assumptions q(A) must be non-singular, for etherwise

there is an eigenvalue A of A such that q(A) = 0. If we
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take x to be & correspending eigenvector we find that
Hx) =lla)xl? «fpA)xl? = = Ipa)2nxi?.

Since H(x)Z 0, p(A) = 0 and 8o p and q have a root in com-
mon, contrary to hypothesis, Another way of stating the as-

sumption on H(e¢ ) is to say that

q(AY* q(A) - p(A)* p(A)2 0, or equivalently, I - g(A)¥g(A)Zz O
where g(A) = p(A) q(A)'l. This is in turn equivalent to

K g(A) )| £ 1, and Theorem 2 shows that this can only hold if
no root of p has absolute value greater than one. The assum-
ption that p and q be relatively prime clearly implies that
no root of p can lie on the unit circle, and hence all roots
of p have modulus strictly less than one.

Suppese, conversely, that the roots of p all have modu-
lus less than 1, and suppese further, for the moment, that
q(A) is non-singular, so that we can ferm g(A) = p(A) q(A)_l.
In the notation ef the proef of Theorem 2, g(A) = Al A2 ools
coo Ay, while||13‘lé 1 for each j (this follows from (6)).
Hence, Y the submultiplicativity ef the norm, [[g(A)l £ 1,
and se I - g(A)¥ g(A)Z O. Multiplying fere and aft by q(A)¥*,
q(A), respectively, we infer that q(A)* q(A) - p(A)¥ p(A)Z 0.
Since the cone of positive semi-definite matrices is closed
the restriction en q(A) can be removed by a simole continui-
ty argument.

Making a suitable choice of A we derive a test akin to
Schur ‘s test for polynomials, but suffering from the disad-~
vantage that we have to check p and q for common factors. If
we stick to the case r = 1, as is a natural thing to do in

mactice, we can circumvent this awkward feature, and obtain

- 683 -




a result which contains that of Schur.

Theorem 3. Let p be a polynomial of degree n, nz=1,

and let A be an nx n matrix such that ““6" 1and I - A¥a
is positive semi-definite and ef rank ene. The roots eof p
are of modulus less then one if and only if the Hemmitian
form H(+ ) en gn given by

H(x) = lq(A)x 1% - fpa)x

is positive definite, where q is_the peolynomial defined by
a(z) = £%p(1/2) .

Proof. Suppose that the roots of p are of absolute va-
lue less than one., The roots of q must then all lie outside
the unit cirele, and since |Alg < 1, it follows that q(A) is
nen~gingular. In the notation of the proof of Thoerem 2
(with k¥ = n) we have p(A) q(tl.)'l = g(A) = A Ay ... Ay Now
the A; ‘s commute and satisfy !IAJ-ﬂé 1 (recall (6)); more-
over, since |Alg <1, it follews from properties of M¥bius
transform tions that lAj lg < 1. Hence, by Theorem 1,

[ gAY 8 < 1. This is to say that I - g(A)¥ g(A) is positive
definite, and hence that q(A)¥ q(A) - p(A)¥ p(A) is pesiti-
ve definite, as required.

Conversely, let H(+ ) be positive definite. A fortiori
q(A)*¥ q(A) is positive definite, and hence q(A) is non-sin=-
gular., Let the highest common factor of p and q be £: we
wish to show that £ = 1, Write p = pf, ¢ = qlf where Dy,

q; are relatively prime polynemials of degree k and pp(z) =
= (2 ~aq)e.ulz -ock), and note that qy(z) = zkpl(m)’. as
can readily be seen when p and q are written as products of

linear factors. The identity
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a(A)¥q(A) = p(A)¥*p(A) = q(A)*[T - &;(A)¥g,(4)] q(A), where
g(A) = pl(A) ql(A)-l, and the fact that q(A) is non-singular
show that I - g;(A)¥g;(A) is positive definite, and hence has
kernel {0%. We have

{0;‘ = Ker (I - BI(A)*‘l(A)) = Ker (I - ‘l(A)*‘l(A))l/z
={x: g M)xl=lxll
={x: Ay .. Axll= lxll
2 v,

where we are using once again the netation of Theorem 2

(with p replaced by pl). Thus V, = £03. Since now r = 1, the
Lemma (i) shows that dim V,2n - k, and hence n = k. Thus p =
= p; and £=1. Now that we know that p and q are relatively
prime we may apply the Corellary to Theorem 2 to deduce that
the reots of p all lie in %he open unit disc. This completes
the proof of Theorem 3.

Theorem 3 gives us infinitely many ways of testing whet-
her the roots ef & polynomial have modulus less than one -
one way for each choice of A satisfying lAlg < 1, (Al £ 1
and rank (I - A¥A) = 1, The simplest such choice is A = S

where )
S = 0 1 (0] vee Q
Q 4] 1 oo 0
0 0 0 oo 1
0 o] 0 5ae 0

(this is the matrix with respect to the natural basis of gn
of the shift operator Sn mentioned in the introduction).

Then if
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p(z) = anzn + 8, 4 Pl e a,,
so that
q(z) = B 2" + Elzn'l + e B,
we have
p(A) = a, a; P a,_q
0 a, ces a, o
. . L v
(0] [¢] oo a,

T
XgyeeosXpq)

p(A)x = (a x_ + o0 + 8y 1Xp1r 8% * oeee v B X 2,00

[}

so that, if x

and se
m~4
ipearx i =—',?‘a bagxy + ayxjey + eee +ay 5 9% | -

On performing a similar calculatien for q we find that the
Hermitian form H( ) is in this case
m~4 2
H(x) =.2?_‘.alanxj *ap Xy toeee * aj+lxn—1‘
m-1
'5?:0‘&0*3 *agXsey toeee t an-j-lxn-ll 2
This yields precisely Schur’s criterion (5, § 13].

It is conceivable that there might on occasion be some-
thing to be gained by making a different cheoice of A. Now the
class £ of matrices A satisfying the conditiona we need
(LA £1, |Alg<1, rank (I - A*A) = 1) has arisen in some
closely related investigations of the author and V. Pték, and
has been shown to have some very interesting properties. For
example, £ consists of all matrices unitarily equivalent to

a matrix of the form (AS + B)(CS + D)1 where A,B,C,D are
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n»xn matrices such that

A B * I ] A B| = |1 0
C D 0 -I. (¢} D o) ~-I

(see [4, Theorem 1]). This description of € enables us to
write down quite a large class of members of € explicitly

({4, § 21): € contains all mtrices of the form

- r n — -
A= |py 8,8, '51?152 eee (=1) 89 Ppee+Dy_15,
0 P, 8,83 eeo (-1)B71 8233...1-3-3_1811
L 0 o 0] eee Pn ]

where py,...,P, are arbitrary complex numbers of modulus less

than 1, and 8; = (1 - pjfj)l/z’, 1< jé&n.
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